
講義メモ
・ 「フィボナッチ数列を求める」からp.185

階乗を計算する 再掲載p.181 ()

・階乗とは、ある正の整数において、その数から までの全整数の積1
※　 実質的にはその数から までの全整数の積になる 2
・整数 の階乗を「 」で表し、例えば、 は 、 は 、 は 、 は 、n n! 2! 2 3! 6 4! 24 5! 120 …
・これを逆順で展開すると
　5! = 5×4×3×2×1
　4! = 4×3×2×1
　3! = 3×2×1
・なので、 、 であることから「 」が導ける。5!=5×4! 4!=4×3! n! = n×(n-1)!
・これをメソッド にすると、Fact
　 の階乗int CalcFact(int n) { //n
　　 を返す 再帰するreturn n * CalcFact(n - 1); //n×(n-1)! ()
　}
・これに、再帰の終了条件として「 の階乗は 」を加えると良い0 1
　 の階乗int CalcFact(int n) { //n
　　 が 超なら を返す 再帰する でなreturn (n > 0) ? n * CalcFact(n - 1) : 1; //n 0 n×(n-1)! ()
ければ を返す1
　}
・ は上記を展開したメソッドになっているp.182 fact01.cs

提出フォロー：アレンジ演習：p.182 fact01.cs

・ メソッドを上記を用いてシンプルにしようCalcFact(int n)

作成例

アレンジ演習：// p.182 fact01.cs
using System;
class Fact {

を返す public long CalcFact(int n) { //n!
が 超なら を返す 再帰す return (n > 0) ? n * CalcFact(n - 1) : 1; //n 0 n×(n-1)! (

る でなければ を返す) 1
 }
}
class fact01 {
 public static void Main() {
 Fact f = new Fact();
 for (int i = 0; i <= 20; i++) {
 Console.WriteLine("{0}! = {1}", i, f.CalcFact(i));
 }
 }
}

フィボナッチ数列を求めるp.185

・フィボナッチ数列は統計やシミュレーションなどに用いる増加速度をもつ数字の並び。
・先頭２値が１で、それ以降は前２値の和になる
・実例： 1,1,2,3,5,8,13,21,34,55,…
・よって、 番目のフィボナッチ数は 番目と 番目の和として、再帰で表現できるn n-1 n-2

p.185 fibonacci.cs

//p.185 fibonacci.cs
using System;
class fibo {

フィボナッチ数列の 番目を返す public long CalcFibo(int n) { // n
 long fb;

先頭２要素は 固定 再帰の終了条件でもある if (n == 1 || n == 2) { // 1 ()
 fb = 1;
 } else {

３値目以降は前２値の和 fb = CalcFibo(n - 1) + CalcFibo(n - 2); //
 }
 return fb;
 }
}
class fibonacci {
 public static void Main() {
 fibo f = new fibo();
 for (int i = 1; i <= 30; i++) {
 Console.WriteLine("f({0}) = {1}", i, f.CalcFibo(i));
 }
 }
}

アレンジ演習：p.185 fibonacci.cs

・条件演算子を用いて記述をシンプルにしよう

作成例

アレンジ演習：// p.185 fibonacci.cs
using System;
class fibo {

フィボナッチ数列の 番目を返す public long CalcFibo(int n) { // n
３ return (n == 1 || n == 2) ? 1 : CalcFibo(n - 1) + CalcFibo(n - 2); //

値目以降は前２値の和
 }
}
class fibonacci {
 public static void Main() {
 fibo f = new fibo();
 for (int i = 1; i <= 30; i++) {
 Console.WriteLine("f({0}) = {1}", i, f.CalcFibo(i));
 }
 }
}

と （値渡しと参照渡し）p.188 ref out

・ においてメソッドの引数は値渡しが基本であり、値のコピーが行われるC#
・よって、メソッド内で引数を変更しても、呼び出し側の指定した引数の値は変わらない
・ が失敗例で、 メソッドで定義して引数に指定している と は、 関数の仮引数p.189 swap01.cs Main x y Swap x
と とは たとえ同名でも 無関係y ()
・ では参照型の場合に参照渡しによりこれを解決できるが、 では参照型でも値渡しになるC/C++ C#

・なお、配列などのようにデータ構造を渡した場合は、構造の専用位置を示す値が値渡しされるので、受け取っ
た側で同じオブジェクトを用いるため、参照渡しになる

p.191 charngearray01.cs

//p.191 charngearray01.cs
using System;
class change {

引数が配列なので実質的に参照渡し public void modify(int[] array) { //
要素数を得て int n = array.Length; //

全要素について繰返す for (int i = 0; i < n; i++) { //
要素値を２倍にする array[i] *= 2; //

 }
 }
}
class changearray01 {
 public static void Main(){
 change c = new change();
 int[] myarray = new int[3]{1, 2, 3};

メソッド実行前 Console.WriteLine("----modify ----");
 int i = 0;

配列 の全要素について繰返す foreach (int x in myarray) { // myarray
値を表示 Console.WriteLine("myarray[{0}] = {1}", i, x); //

 i++;
 }

要素値を２倍にする c.modify(myarray); //
メソッド実行後 Console.WriteLine("----modify ----");

 i = 0;
配列 の全要素について繰返す foreach (int x in myarray) { // myarray

 Console.WriteLine("myarray[{0}] = {1}", i, x);
 i++;
 }
 }
}

キーワードp.192 ref

・値渡しとなる引数と仮引数の両方に「 」を前置すると、参照渡しに変更されるref
・なお、この仮引数は事前に初期化が必要

p.193 swap03.cs

//p.193 swap03.cs
using System;
class myclass {
 private int temp;

仮引数 と は参照渡しにする public void swap(ref int x, ref int y) { // x y
 temp = x;

ここで を書き換えた結果が引数に反映する x = y; // x
ここで を書き換えた結果が引数に反映する y = temp; // y

 }
}
class swap03 {
 public static void Main() {

 myclass s = new myclass();
引数用の変数を初期化 int x = 10, y = 20; //
参照渡しにより、呼び出す s.swap(ref x, ref y); //

 Console.WriteLine("x = {0}, y = {1}", x, y);
 }
}

（ キーワード）p.194 out

※ テキストでは の代わりに無条件に が利用できるような説明になっているが、制限もある ref out
・ に代わりに を指定すると、事前の初期化が不要になるref out
・ただし、 指定の仮引数は初期化されていないことから、代入の右辺には記述できないout
・よって、 の「 」を「 」にするとエラーになるp.193 swap03.cs ref out
・また、古いバージョンの では利用できないC#

p.194 outkeyword01.cs

//p.194 outkeyword01.cs
using System;
class MyClass{

仮引数 は参照渡し public void Square(double x, double y, out double s) { // s
よって を する必要はない s = x * y; // s return

 }
}
class outkeyword01 {
 public static void Main() {
 double a = 125.3, b = 16.25, c;
 MyClass mc = new MyClass();

には値を代入していません //c
初期化していない を参照渡しできる mc.Square(a, b, out c); // c

縦 横 の長方形の面積は 平方メートル Console.WriteLine(" {0}m, {1}m {2} ", a, b, c);
 }
}

補足： についてp.194 outkeyword01.cs

・ メソッドは 値を返すようになっているので、 は必須ではない。下記で可能。Square 1 out
 public double Square(double x, double y) {
 return x * y;
 }

アレンジ演習：p.194 outkeyword01.cs

・引数 と の和と積を返すメソッドx y public void AddMul(double x, double y, out double add,
にしようout double mul)

作成例

アレンジ演習：// p.194 outkeyword01.cs
using System;
class MyClass{
 public void AddMul(double x, double y, out double add, out double mul) { //
仮引数 は参照渡しadd,mul

よって する必要はない add = x + y; // return

よって する必要はない mul = x * y; // return
 }
}
class outkeyword01 {
 public static void Main() {
 double a = 125.3, b = 16.25, c, d;
 MyClass mc = new MyClass();

初期化していない 、 を参照渡しできる mc.AddMul(a, b, out c, out d); // c d
和は 積は Console.WriteLine(" {0}, {1}", c, d);

 }
}

メソッドのオーバーロードp.195

・ で説明のとおり、引数の型や数が異なるコンストラクタを記述できることをオーバーロードp.168
・これは、メソッドでも可能なので、同じ意味の処理を行うメソッドは同じ名前にすると良い
※　 オーバーロードができない 言語では関数名が長くなるというデメリットがある C
・コンストラクタと同様にシグニチャが異なれば だが、メソッドの戻り値型はシグニチャに含まれないので注意OK
・これは戻り値型だけが異なるメソッドは呼び出し時に区別できないため

p.195 overload01.cs

//p.195 overload01.cs
using System;
class manymethods {

メソッド public int Method(int x) { // ①
第１のバージョンが呼ばれました Console.WriteLine(" ");

 return x + 10;
 }

メソッド public double Method(double x) { // ②
第２のバージョンが呼ばれました Console.WriteLine(" ");

 return x * 2;
 }

メソッド public string Method(string x) { // ③
第３のバージョンが呼ばれました Console.WriteLine(" ");

です return x += " ";
 }

メソッド public int Method(int x, int y) { // ④
第４のバージョンか呼ばれました Console.WriteLine(" ");

 return x + y;
 }
}
class overload01 {
 public static void Main() {
 manymethods m = new manymethods();

その戻り値は「 」です を呼ぶ Console.WriteLine(" {0} ", m.Method(3)); //①
その戻り値は「 」です を呼ぶ Console.WriteLine(" {0} ", m.Method(3.2)); //②
その戻り値は「 」です 粂井 を呼ぶ Console.WriteLine(" {0} ", m.Method(" ")); //③
その戻り値は「 」です を呼ぶ Console.WriteLine(" {0} ", m.Method(5, 6)); //④

 }
}

アレンジ演習：p.195 overload01.cs

・下記のシグニチャを持ち、最大値を返す メソッドのオーバーロードに書き換えようMax
① int Max(int, int)
② int Max(int, int, int)
③ double Max(double, double, double, double)
④ double Max(double[])

作成例

アレンジ演習：// p.195 overload01.cs
using System;
class manyMaxs {

メソッド public int Max(int x, int y) { // ①
大きい方を返す return (x > y) ? x : y; //

 }
メソッド public int Max(int x, int y, int z) { // ②

最大値を返す return (x > y) ? ((x > z) ? x: z) : ((y > z) ? y : z); //
 }

メソッド public double Max(double x, double y, double z, double w) { // ③
と の大きい方を得る double max1 = (x > y) ? x : y; //x y
と の大きい方を得る double max2 = (z > w) ? z : w; //z w

上記２者の大きい方を返す return (max1 > max2) ? max1 : max2; //

 }

メソッド public double Max(double[] d) { // ④
 double max = double.MinValue;

全要素について作業変数 に取り出しながら繰返す foreach (var w in d) { // w
 if (w > max) {

最大値更新 max = w; //
 }
 }
 return max;
 }
}
class overload01 {
 public static void Main() {
 manyMaxs m = new manyMaxs();

： を呼ぶ Console.WriteLine("max(3, 5) {0}", m.Max(3, 5)); //①
： を呼ぶ Console.WriteLine("max(3, 7, 1) {0}", m.Max(3, 7, 1)); //②

： Console.WriteLine("max(3.14, 5.25, 7.79, -2.1) {0}", m.Max(3.14, 5.25,
を呼ぶ7.79, -2.1)); //③

 double[] da = {3.14, 5.25, 7.79, -2.1, 9.25};
： Console.WriteLine("max(3.14, 5.25, 7.79, -2.1, 9.25) {0}", m.Max(da));

を呼ぶ//④
 }
}

アレンジ演習：p.195 overload01.cs

・最大値を求める処理を１つにしよう
・ の引数を 型の配列に格納して を呼ぶと良い①②③ double ④

作成例

アレンジ演習：// p.195 overload01.cs

using System;
class manyMaxs {

メソッド public int Max(int x, int y) { // ①
引数を配列化する double[] wa = {x, y}; //
メソッド を呼ぶ return (int)Max(wa); // ④

 }
メソッド public int Max(int x, int y, int z) { // ②

引数を配列化する double[] wa = {x, y, z}; //
メソッド を呼ぶ return (int)Max(wa); // ④

 }
メソッド public double Max(double x, double y, double z, double w) { // ③

引数を配列化する double[] wa = {x, y, z, w}; //
メソッド を呼ぶ return Max(wa); // ④

 }
メソッド public double Max(double[] d) { // ④

 double max = double.MinValue;
全要素について作業変数 に取り出しながら繰返す foreach (var w in d) { // w

 if (w > max) {
最大値更新 max = w; //

 }
 }
 return max;
 }
}
class overload01 {
 public static void Main() {
 manyMaxs m = new manyMaxs();

： を呼ぶ Console.WriteLine("max(3, 5) {0}", m.Max(3, 5)); //①
： を呼ぶ Console.WriteLine("max(3, 7, 1) {0}", m.Max(3, 7, 1)); //②

： Console.WriteLine("max(3.14, 5.25, 7.79, -2.1) {0}", m.Max(3.14, 5.25,
を呼ぶ7.79, -2.1)); //③

 double[] da = {3.14, 5.25, 7.79, -2.1, 9.25};
： Console.WriteLine("max(3.14, 5.25, 7.79, -2.1, 9.25) {0}", m.Max(da));

を呼ぶ//④
 }
}

別解（メソッド の中身を１行に）①②③

アレンジ演習：// p.195 overload01.cs
using System;
class manyMaxs {

メソッド public int Max(int x, int y) { // ①
メソッド を呼ぶ return (int)Max(new double[]{x, y}); // ④

 }
メソッド public int Max(int x, int y, int z) { // ②

メソッド を呼ぶ return (int)Max(new double[]{x, y, z}); // ④
 }

メソッド public double Max(double x, double y, double z, double w) { // ③
メソッド を呼ぶ return Max(new double[]{x, y, z, w}); // ④

 }
メソッド public double Max(double[] d) { // ④

 double max = double.MinValue;
全要素について作業変数 に取り出しながら繰返す foreach (var w in d) { // w

 if (w > max) {
最大値更新 max = w; //

 }
 }
 return max;
 }
}
class overload01 {
 public static void Main() {
 manyMaxs m = new manyMaxs();

： を呼ぶ Console.WriteLine("max(3, 5) {0}", m.Max(3, 5)); //①
： を呼ぶ Console.WriteLine("max(3, 7, 1) {0}", m.Max(3, 7, 1)); //②

： Console.WriteLine("max(3.14, 5.25, 7.79, -2.1) {0}", m.Max(3.14, 5.25,
を呼ぶ7.79, -2.1)); //③

 double[] da = {3.14, 5.25, 7.79, -2.1, 9.25};
： Console.WriteLine("max(3.14, 5.25, 7.79, -2.1, 9.25) {0}", m.Max(da));

を呼ぶ//④
 }
}

メソッドのオーバーロードp.197 Main

・ メソッドは特殊なメソッドであり、プログラムの動作開始位置の指定を行うMain
・ メソッドは であり、戻り値は または 、引数は無しまたは文字列配列であれば良Main public static void int
い
・戻り値を にすると、プログラムの呼び出し側に整数値を返すことができるint
・プログラムの呼び出し側が の場合は正常終了した を、でなければ 以外を すると良いOS 0 0 return
・この値はシステム変数「 」で参照できるので、直後にコマンド「 」を実行すerrorlebel echo %errorlebel%
ると得られる
・戻り値を文字列配列にすると、呼び出し時に 個以上の文字列を与えることができ、メソッド内で受け取って0
利用できる
・この文字列をコマンドライン引数といい、 ではデバッグのプロパティで指定可能Visual Studio
・コマンドプロンプトなどの外部処理からプログラムを実行可能であり、この時はプログラム名に続けてコマンドライ
ン引数を指定可能
・なお、コマンドライン引数の数は不定なので、 プロパティで要素数を得て用いると良いLength

p.198 main01.cs

//p.198 main01.cs
using System;
class main01 {

コマンドライン引数を受け取り整数を返す public static int Main(string[] s) { //
 int n;

コマンドライン引数の数を得る n = s.Length; //
引数の個数は 個です Console.WriteLine(" {0} ", n);

コマンドライン引数が指定されている？ if (n != 0) { //
全引数について繰返す for (int i = 0; i < n; i++) { //

引数 Console.WriteLine(" {0} : {1}", i + 1, s[i]);
 }
 }

正常終了を返す return 0; //
 }
}

補足：コマンドラインからの実行方法

「ツール」「コマンドライン」「開発者用コマンドプロンプト」①
プロジェクト名 （例： ）② cd \bin\debug cd chap8\bin\debug

プロジェクト名に続けてコマンドライン引数を記述する（例： ）③ chap8 cat dog apple
※ この環境では「 」が「 」の反対 バックスラッシュ になるが同じ文字コードなので問題ない \ / ()

（バッチファイル）p.200

・複数のコマンドをまとめて実行したい場合に、これらを記述して「 」として保存するとバッチファイルとみなさ●.bat
れる
・コマンドプロンプトでバッチファイル名をそのまま記述するだけで、内容が実行される

補足：バッチファイルの作成例

・開発者用コマンドプロンプトを起動して「 」「はい」でバッチファイルが作成可能になるnotepad a.bat
・下記を記述して「ファイル」「保存」して閉じる

ver
dir
date

・「 」と入力すると、バージョン情報、ファイル一覧、日付確認の順に動作するa.bat
※　 日付確認は キーを押すだけでEnter OK

の実行方法p.199 main02.cs

「 」は、 のバッチファイル「 」で実行するp.199 main02.cs p.200 main02test.bat
「 」は「デバッグなしで実行」は行わず「ビルド」「ソリューションのビルド」のみを行い、実行可能にして① main02.cs
おく
「ツール」「コマンドライン」「開発者用コマンドプロンプト」②

プロジェクト名 （例： ）③ cd \bin\debug cd chap8\bin\debug
④ notepad main02test.bat

のバッチファイル「 」の内容をコピーペースト⑤ p.200 main02test.bat
この中の「 」を全てプロジェクト名に書き換える⑥ main02
「ファイル」「名前をつけて保存」して閉じる（このときエンコードを「 」に変更すること）⑦ ANSI

⑧ main02test.bat

のバッチファイル「 」p.200 main02test.bat

@rem main02test.bat
@echo off
main02
echo %errorlevel%

「 」の呼び出し結果ですecho main02.exe
main02
echo %errorlevel%

「 」の呼び出し結果ですecho main02.exe
main02 a
echo %errorlevel%

「 」の呼び出し結果ですecho main02.exe a
main02 20 30
echo %errorlevel%

「 」の呼び出し結果ですecho main02.exe 20 30

main02 30
echo %errorlevel%

「 」の呼び出し結果ですecho main02.exe 30

提出：main02.cs

次回予告： 「引数が可変個のメソッド」からp.201

