
講義メモ
・ 「デストラクタ」から再開しますp.171

アレンジ演習フォロー：p.169 construct02.cs

・名前と年齢を引数で受け取るコンストラクタ を追加しよう④
・ メソッドにおいて、コンストラクタ を呼ぶ処理と、結果を表示する処理を追加しようMain ④

作成例

アレンジ演習：// p.169 construct02.cs
using System;
class MyClass {

名前：外部から見えないインスタンス変数 private string name; //
年齢：外部から見えないインスタンス変数 private int age; //
住所：外部から見えないインスタンス変数 private string address; //

戻り値のないインスタンスメソッド public void Show() { //
メソッド内で用いるローカル変数 string toshi; //
年齢が になっていたら if (age == -1) { // -1

不明 toshi = " ";
 } else {

型から文字列化して代入 toshi = age.ToString(); //int
 }

氏名 住所 年齢 Console.WriteLine(" :{0} :{1} :{2}", name, address, toshi);
 }

引数のあるコンストラクタ 文字列 名前 public MyClass(string str) { // ①(:)
 name = str;

不定 住所は規定値 address = " "; //
年齢は規定値 age = -1; //

 }
引数のあるコンストラクタ 整数 年齢 public MyClass(int x) { // ②(:)

 age = x;
不明 名前は規定値 name = " "; //
不定 住所は規定値 address = " "; //

 }
引数のあるコンストラクタ 文字 public MyClass(string str1, string str2, int x) { // ③(

列 名前 文字列 住所 整数 年齢: , : , :)
 name = str1;
 address = str2;
 age = x;
 }

【以下追加】引数のあるコンストラクタ 文字列 public MyClass(string str1, int x) { // ④(:
名前 整数 年齢, :)
 name = str1;
 age = x;

不定 住所は規定値 address = " "; //
 }
}
class construct01 {
 public static void Main() {

コンストラクタ が呼ばれる MyClass mc1 = new MyClass(18); // ②
粂井康孝 コンストラクタ が呼ばれる MyClass mc2 = new MyClass(" "); // ①
田中太郎 東京都 コンストラクタ が呼ばれ MyClass mc3 = new MyClass(" ", " ", 32); // ③

る

田中太郎 【追加】コンストラクタ が呼ばれる MyClass mc4 = new MyClass(" ", 32); // ④
 mc1.Show();
 mc2.Show();
 mc3.Show();

【追加】 mc4.Show(); //
 }
}

（コンストラクタのオーバーロードとデフォルトコンストラクタ）p.171

・ の通り、コンストラクタを一切記述しないと、引数無し中身無しのコンストラクタが内部的に用意されてp.167
用いられる
・これに対して、 のように、引数有りのコンストラクタを記述できるが、こうすると、引数p.169 construct02.cs
無し中身無しのコンストラクタは用意されなくなる
・よって、必要があれば、自前で、引数無し中身無しのコンストラクタを記述して、オーバーロードにすること

アレンジ演習：p.169 construct02.cs

・名前を 不明 、住所を 不定 、年齢を にする、引数で受け取らないコンストラクタ を追加しよう" " " " -1 ⑤
・ メソッドにおいて、コンストラクタ を呼ぶ処理と、結果を表示する処理を追加しようMain ⑤

作成例

アレンジ演習：// p.169 construct02.cs
using System;
class MyClass {

名前：外部から見えないインスタンス変数 private string name; //
年齢：外部から見えないインスタンス変数 private int age; //
住所：外部から見えないインスタンス変数 private string address; //

戻り値のないインスタンスメソッド public void Show() { //
メソッド内で用いるローカル変数 string toshi; //
年齢が になっていたら if (age == -1) { // -1

不明 toshi = " ";
 } else {

型から文字列化して代入 toshi = age.ToString(); //int
 }

氏名 住所 年齢 Console.WriteLine(" :{0} :{1} :{2}", name, address, toshi);
 }

引数のあるコンストラクタ 文字列 名前 public MyClass(string str) { // ①(:)
 name = str;

不定 住所は規定値 address = " "; //
年齢は規定値 age = -1; //

 }
引数のあるコンストラクタ 整数 年齢 public MyClass(int x) { // ②(:)

 age = x;
不明 名前は規定値 name = " "; //
不定 住所は規定値 address = " "; //

 }
引数のあるコンストラクタ 文字 public MyClass(string str1, string str2, int x) { // ③(

列 名前 文字列 住所 整数 年齢: , : , :)
 name = str1;
 address = str2;
 age = x;
 }

引数のあるコンストラクタ 文字列 名前 整数 public MyClass(string str1, int x) { // ④(: , :
年齢)
 name = str1;
 age = x;

不定 住所は規定値 address = " "; //
 }

【以下追加】引数の無いコンストラクタ public MyClass() { // ⑤
不明 名前は規定値 name = " "; //

年齢は規定値 age = -1; //
不定 住所は規定値 address = " "; //

 }
}
class construct01 {
 public static void Main() {

コンストラクタ が呼ばれる MyClass mc1 = new MyClass(18); // ②
粂井康孝 コンストラクタ が呼ばれる MyClass mc2 = new MyClass(" "); // ①
田中太郎 東京都 コンストラクタ が呼ばれ MyClass mc3 = new MyClass(" ", " ", 32); // ③

る
田中太郎 コンストラクタ が呼ばれる MyClass mc4 = new MyClass(" ", 32); // ④

【追加】コンストラクタ が呼ばれる MyClass mc5 = new MyClass(); // ⑤
 mc1.Show();
 mc2.Show();
 mc3.Show();
 mc4.Show();

【追加】 mc5.Show(); //
 }
}

デストラクタp.171

・プログラムの終了や有効期間の終了によてオブジェクトが破棄される時、その直前に自動的に呼び出されるの
がデストラクタ
・よって、コンストラクタに似ているが、仕様の違いに注意
・主に、利用していたリソース 資源＝ファイルやデータベース、通信など の解放のような「後始末」に向く。()
・デストラクタはメソッドに似ているが、アクセス修飾子や引数、戻り値はない。
・引数がないのでオーナーライドもできない
・デストラクタは名前もなく「 クラス名」固定とする。~
・書式： クラス名 内容 ~ () { }
・コンストラクタと同様で、記述がなければ自動的に中身の無いデストラクタが内部的に用意されて用いられる
・デストラクタはインスタンスに含まれるので、複数のインスタンスを生成すると、複数のデストラクタが動作する
・この時の実行順序は決まっていない

p.172 destruct01.cs

//p.172 destruct01.cs
using System;
class DestructTest {
 int x;

デストラクタ //
 ~DestructTest() {

デストラクタが呼ばれました Console.WriteLine(" ");
は です Console.WriteLine("x {0} ", x);

 }
引数付きコンストラクタ //

 public DestructTest(int n) {
コンストラクタが呼ばれました Console.WriteLine(" ");

 x = n;
に を代入しました Console.WriteLine("x {0} ", n);

 }
}
class destruct {
 public static void Main(){
 DestructTest dt1 = new DestructTest(1);

生成 Console.WriteLine("dt1 ");
 DestructTest dt2 = new DestructTest(2);

生成 Console.WriteLine("dt2 ");
 DestructTest dt3 = new DestructTest(3);

生成 この直後に３つのデストラクタが順不同で実行される Console.WriteLine("dt3 "); //
 }
}

アレンジ演習：p.172 destruct01.cs

・オブジェクトが参照変数からアクセスできなくなると、消去の対象となり、消去時にデストラクタが動作する
・しかし、メモリや処理の余裕がある間は、この作業（ガベージコレクション）は実行されない
・このことを試すために、 型の参照変数 を再利用してみようDestructTest dt1

オブジェクト 生成 DestructTest dt1 = new DestructTest(1); // ①
オブジェクト 生成、ここで が消去対象になる dt1 = new DestructTest(2); // ② ①
オブジェクト 生成、ここで も消去対象になる dt1 = new DestructTest(3); // ③ ②

作成例

アレンジ演習：// p.172 destruct01.cs
using System;
class DestructTest {
 int x;

デストラクタ //
 ~DestructTest() {

デストラクタが呼ばれました Console.WriteLine(" ");
は です Console.WriteLine("x {0} ", x);

 }
引数付きコンストラクタ //

 public DestructTest(int n) {
コンストラクタが呼ばれました Console.WriteLine(" ");

 x = n;
に を代入しました Console.WriteLine("x {0} ", n);

 }
}
class destruct {
 public static void Main(){

オブジェクト 生成 DestructTest dt1 = new DestructTest(1); // ①
オブジェクト 生成、ここで が消去対象になる dt1 = new DestructTest(2); // ② ①
オブジェクト 生成、ここで も消去対象になる dt1 = new DestructTest(3); // ③ ②

実際は もプログラム終了まで残ってしまい、まとめてデストラクタが動作する } // ①②
}

p.174 this

・メソッドやコンストラクタの中で、自分が所属するオブジェクトへの参照を得たい場合に用いる
・よって、 上の例のように、インスタンス変数であることを「 」を前置して明示することもできるが、通p.174 this.
常は省略する
【補足 】①
・ の用途として、コンストラクタの引数名をデータメンバ名と同じにする手法が良く用いられるthis
・これで、インスタンス変数に「 」を前置して「 メンバ名 メンバ名 」と表記できるthis. this. = ;
　例：
　class Slime {
　　int hp, mp;
　　 コンストラクタの引数がメンバ名public Slime(hp, mp) { this.hp = hp; this.mp = mp; } //
と同じ
　}
【補足 】②
・ の用途として、コンストラクタのオーバロードにおいて、他のコンストラクタを で呼ぶ手法が良く用いられthis this
る
・書式： クラス名 引数リスト 引数リスト public () : this() {}
・この書式をコンストラクタ初期化子という
・これで、複数のコンストラクタにまたがって同一内容を記述することを避けられる
　例：
　class Slime {
　　int hp, mp;
　　 と を指定するコpublic Slime(int hp, int mp) { this.hp = hp; this.mp = mp; } //HP MP
ンストラクタ①
　　 だけを指定するコンストラクタ は を利用public Slime(int hp) : this(hp, 0) {} //HP ② ①
　　 引数を指定しないコンストラクタ も を利用public Slime() : this(0, 0) {} // ③ ①
　}

⇒アレンジ演習：p.169 construct02.cs p.169 construct02a.cs

・【補足 】を用いて、３つのコンストラクタの引数名をメンバ名と同じにしよう①

作成例

アレンジ演習：// p.169 construct02.cs
using System;
class MyClass {

名前：外部から見えないインスタンス変数 private string name; //
年齢：外部から見えないインスタンス変数 private int age; //
住所：外部から見えないインスタンス変数 private string address; //

戻り値のないインスタンスメソッド public void Show() { //
メソッド内で用いるローカル変数 string toshi; //
年齢が になっていたら if (age == -1) { // -1

不明 toshi = " ";
 } else {

型から文字列化して代入 toshi = age.ToString(); //int
 }

氏名 住所 年齢 Console.WriteLine(" :{0} :{1} :{2}", name, address, toshi);
 }

【変更】引数のあるコンストラクタ 文字列 名前 public MyClass(string name) { // ①(:)
【変更】 this.name = name; //

不定 住所は規定値 address = " "; //
年齢は規定値 age = -1; //

 }
【変更】引数のあるコンストラクタ 整数 年齢 public MyClass(int age) { // ②(:)

【変更】 this.age = age; //
不明 名前は規定値 name = " "; //
不定 住所は規定値 address = " "; //

 }
引数のあるコンストラクタ public MyClass(string name, string address, int age) { // ③

文字列 名前 文字列 住所 整数 年齢(: , : , :)
【変更】 this.name = name; //

【変更】 this.address = address; //
【変更】 this.age = age; //

 }
}
class construct01 {
 public static void Main() {

コンストラクタ が呼ばれる MyClass mc1 = new MyClass(18); // ②
粂井康孝 コンストラクタ が呼ばれる MyClass mc2 = new MyClass(" "); // ①
田中太郎 東京都 コンストラクタ が呼ばれ MyClass mc3 = new MyClass(" ", " ", 32); // ③

る
 mc1.Show();
 mc2.Show();
 mc3.Show();
 }
}

アレンジ演習：p.169 construct02a.cs

・さらに【補足 】を用いて、コンストラクタ と はコンストラクタ を用いるようにしよう② ① ② ③

作成例

アレンジ演習：// p.169 construct02.cs
using System;
class MyClass {

名前：外部から見えないインスタンス変数 private string name; //
年齢：外部から見えないインスタンス変数 private int age; //
住所：外部から見えないインスタンス変数 private string address; //

戻り値のないインスタンスメソッド public void Show() { //
メソッド内で用いるローカル変数 string toshi; //
年齢が になっていたら if (age == -1) { // -1

不明 toshi = " ";
 } else {

型から文字列化して代入 toshi = age.ToString(); //int
 }

氏名 住所 年齢 Console.WriteLine(" :{0} :{1} :{2}", name, address, toshi);
 }

不定 【変更】コンストラクタ public MyClass(string name) : this(name, " ", -1) { } // ①(
⇒文字列 名前 を呼ぶ:) ③

不明 不定 【変更】コンストラクタ public MyClass(int age) : this(" ", " ", age) { } // ②(
⇒整数 年齢 を呼ぶ:) ③

引数のあるコンストラクタ public MyClass(string name, string address, int age) { // ③
文字列 名前 文字列 住所 整数 年齢(: , : , :)

 this.name = name;
 this.address = address;
 this.age = age;
 }

}
class construct01 {
 public static void Main() {

コンストラクタ が呼ばれる MyClass mc1 = new MyClass(18); // ②
粂井康孝 コンストラクタ が呼ばれる MyClass mc2 = new MyClass(" "); // ①
田中太郎 東京都 コンストラクタ が呼ばれ MyClass mc3 = new MyClass(" ", " ", 32); // ③

る
 mc1.Show();
 mc2.Show();
 mc3.Show();
 }
}

既存のクラスを使ってみるp.176

・ここまでで、 、 などの既存のクラスを利用しているが、ここでは、インスタンスメソッドを持つクラスのSystem Math
一例として、 クラスを用いようArrayList
・ クラスは、配列の機能を拡張した仕組みを提供するもので、配列にはない柔軟な利用が可能ArrayList
・利用には「 」を指定するusing Sytem.Collections;
※　 クラスなどのデータ構造を表すことのできるクラスをコレクションと呼ぶ ArrayList
・インスタンスを生成すると、配列に似たデータ構造が生成されるが、配列とは異なり、要素数を事前に決める
必要がなく、動的に変更することもできる
・要素の追加にはインスタンスメソッドの データ を用い、追加にしたがって要素数が拡張されるAdd()
・件数を返す プロパティも利用可能Count
※　 プロパティは特殊なメソッドで８章で説明
・格納済の要素は、配列と同様にオブジェクト名 添字 で直接アクセスできる[]

p.177 arraylist01.cs

//p.177 arraylist01.cs
using System;

用using System.Collections; //ArrayList
class arraylist01 {
 public static void Main() {

終了フラグをオフで初期化 bool bEnd = false; //
読込用 string strData; //
合計 double sum = 0.0; //

オブジェクトを生成 ArrayList al = new ArrayList(); //ArrayList
無限ループ while (true) { //
データ 数値以外入力で終了 Console.Write(" ()-- ");

 strData = Console.ReadLine();
文字目が数字 if (!Char.IsDigit(strData[0]) && strData[0] != '-') { //1

ではなくマイナスでもない？
終了フラグをオンにする bEnd = true; //

数字またはマイナスなら } else { //
実数に変換して に格納 al.Add(double.Parse(strData)); // ArrayList

 }
終了フラグがオン？ if (bEnd) { //
繰返しを抜ける break; //

 }
 }

に格納した件数の分、繰返す for (int i = 0; i < al.Count; i++) { //ArrayList
値を表示 Console.WriteLine("Data[{0}] = {1}", i + 1, al[i]); //

合計に足し込む sum += (double)al[i]; //

 }
に格納した件数を得る int count = al.Count; //ArrayList

合計を件数で割って平均値を得る double avr = sum / count; //
データ個数 Console.WriteLine(" = {0}", count);
平均値 Console.WriteLine(" = {0}", avr);

 }
}

アレンジ演習：p.177 arraylist01.cs

・ プロパティを２回呼び出しているが、１回にしようCount
・終了フラグを廃止しよう

作成例

アレンジ演習：// p.177 arraylist01.cs
using System;

用using System.Collections; //ArrayList
class arraylist01 {
 public static void Main() {

読込用 string strData; //
合計 double sum = 0.0; //

オブジェクトを生成 ArrayList al = new ArrayList(); //ArrayList
無限ループ while (true) { //
データ 数値以外入力で終了 Console.Write(" ()-- ");

 strData = Console.ReadLine();
文字目が数字 if (!Char.IsDigit(strData[0]) && strData[0] != '-') { //1

ではなくマイナスでもない？
【移動】繰返しを抜ける break; //

数字またはマイナスなら } else { //
実数に変換して に格納 al.Add(double.Parse(strData)); // ArrayList

 }
 }

【移動】 に格納した件数を得る int count = al.Count; // ArrayList
【変更】件数の分、繰返す for (int i = 0; i < count; i++) { //

値を表示 Console.WriteLine("Data[{0}] = {1}", i + 1, al[i]); //
合計に足し込む sum += (double)al[i]; //

 }
データ個数 Console.WriteLine(" = {0}", count);
平均値 【変更】合計を件数で割って平 Console.WriteLine(" = {0}", sum / count); //

均値を得る
 }
}

練習問題１ ヒントp.180

・クラス名や変数名は自由
・例： class MyClass { public int i; }
・読みだした値は確認用に表示すると良い

作成例

練習問題１//p.180
using System;

型の インスタンス変数のみを持つクラスclass MyClass { public int i; } //int public
class ex0701 {
 public static void Main() {

オブジェクトを生成 MyClass mc = new MyClass(); //MyClass
 mc.i = 10;
 Console.WriteLine("mc.i = {0}", mc.i);
 }
}

練習問題２ ヒントp.180

・クラス名やメソッド名は自由
・ただし、オーバーロードなので、同じメソッド名とすること
・ メソッドから呼び出すために、２つのメソッドは にするMain public
・ 型と 型の和を求めるメソッドは戻り値型も にするint int int
・ 型と 型の和を求めるメソッドは戻り値型も にするdouble double double
・結果は確認用に表示すると良い

作成例

練習問題２//p.180
using System;
class MyClass {

メソッド public int sum(int a, int b) { // ①
 return a + b;
 }

メソッド ＝ のオーバーロード public double sum(double a, double b) { // ② ①
 return a + b;
 }
}
class ex0702 {
 public static void Main() {

オブジェクトを生成 MyClass mc = new MyClass(); //MyClass
整数 メソッド Console.WriteLine(" {0} + {1} = {2}", 2, 3, mc.sum(2, 3)); // ①

が呼ばれる
実数 Console.WriteLine(" {0} + {1} = {2}", 3.14, 4.99, mc.sum(3.14,

メソッド が呼ばれる4.99)); // ②
 }
}

第８章 クラスとメソッドの詳細

メソッドの再帰呼び出しp.181

・最近のプログラム言語では、あるメソッドの中で自分自身を呼び出すことが可能で、これを再帰という。
・再帰を上手く利用すると、プログラムをシンプルに記述出来る場合がある
・単純に自分自身を呼び出すと呼び出しが無限ループするので（これ以上）自分を呼び出さずに式や値を返す
処置が必要

階乗を計算するp.181

・階乗とは、ある正の整数において、その数から までの全整数の積1
※　 実質的にはその数から までの全整数の積になる 2
・整数 の階乗を「 」で表し、例えば、 は 、 は 、 は 、 は 、n n! 2! 2 3! 6 4! 24 5! 120 …

・これを逆順で展開すると
　5! = 5×4×3×2×1
　4! = 4×3×2×1
　3! = 3×2×1
・なので、 、 であることから「 」が導ける。5!=5×4! 4!=4×3! n! = n×(n-1)!
・これをメソッド にすると、Fact
　 の階乗int CalcFact(int n) { //n
　　 を返す 再帰するreturn n * CalcFact(n - 1); //n×(n-1)! ()
　}
・これに、再帰の終了条件として「 の階乗は 」を加えると良い0 1
　 の階乗int CalcFact(int n) { //n
　　 が 超なら を返す 再帰する でなreturn (n > 0) ? n * CalcFact(n - 1) : 1; //n 0 n×(n-1)! ()
ければ を返す1
　}
・ は上記を展開したメソッドになっているp.182 fact01.cs

p.182 fact01.cs

//p.182 fact01.cs
using System;
class Fact {

を返す public long CalcFact(int n) { //n!
階乗値 long fact; //

は なので（再帰の終了条件になる） if (n == 0) { //0! 1
を返す fact = 1; //1

以上ならば } else { //1
「 」により再帰する fact = n * CalcFact(n - 1); // n! = n * (n - 1)!

 }
階乗値を返す return fact; //

 }
}
class fact01 {
 public static void Main() {
 Fact f = new Fact();
 for (int i = 0; i <= 20; i++) {
 Console.WriteLine("{0}! = {1}", i, f.CalcFact(i));
 }
 }
}

アレンジ演習：p.182 fact01.cs

・ メソッドを上記を用いてシンプルにしようCalcFact(int n)

提出：アレンジ演習：p.182 fact01.cs

次回予告： 「フィボナッチ数列を求める」p.185

