
講義メモ
・ （ メソッドを含むクラス）からp.159 Main

（ メソッドを含むクラス）p.159 Main

・ などのように、インスタンス変数を持つクラスと、 メソッドを持つクラスは別にするのが基本simpleclass03 Main
・そして、インスタンス変数を持つクラスはプログラム部品として設計・活用することが多い
・しかし、 メソッドを持つクラスにインスタンス変数を持つこともできるMain
・このようなクラスのインスタンスには メソッドは含まれないので、インスタンス変数を持つクラスと、 メソッMain Main
ドを持つクラスを別にした場合と同様に動作する
・よって、例外的な記述法だが、次項以降で説明するメソッドのテスト処理の記述などに用いることもある

p.159 simpleclass04

//p.159 simpleclass04
using System;
class simpleclass04 {

インスタンス変数 このクラス内からのみ利用可能 private int x; // ()
 public static void Main() {

自分が属するクラスを型とする変数を定義できる simpleclass04 s; //
自分が属するクラスのインスタンスを生成できる s = new simpleclass04(); //

このインスタンスの中に、インスタンス変数があるので代入可能 s.x = 10; //
表示も可能 Console.WriteLine("s.x = " + s.x); //

 }
}

メソッドを定義しようp.160

・ 言語の構造体とは異なり、クラスには処理を行うメソッドを自由に定義できるC
・なお、 メソッドは特別な意味をもつメソッドとして扱われるMain
・メソッドは 言語などの関数と同じ仕掛けで、 個以上の情報を受け取り、処理して、 または 個の情報を返C 0 0 1
すことができる
・返す値を戻り値 返却値 といい、メソッド定義の冒頭で、その型を示す。()
・なお、返す値が 個の場合は、無を意味する を指定する0 void
・返す値が 個の場合は、メソッドの中に「 式または値 」を記述し、どういうアルゴリズムになっていても、1 return ;
必ず ができないとコンパイルエラーになるので注意。return
・なお、 の後続部分は実行されないので、絶対に実行されない状態にしてしまうと、コンパイルエラーになreturn
る
・ には式や他のメソッドの呼び出しが記述できる（メソッドの処理内容を全て記述できることもある）return
・例： int add3(int a, int b, int c) { return a + b + c; }
・ 個以上の情報を受け取る仕掛けが引数で、上の のように、型と共に引数リスト パラメータリスト とし0 a,b,c ()
て、メソッド名直後のカッコ内に記述する
・ 個の場合も、カッコは省略不可0
※ メソッド側で定義している引数を仮引数ともいう（メソッドを呼び出す側で指定するのは実引数）
・メソッドのアクセス修飾子は、通常、 利用自由 か 外部からの利用不可private() public()
・定義書式： アクセス修飾子 戻り値型 メソッド名 引数リスト () {…}
・例：
　 利用自由で 型 引数をを受け取り 型の値をpublic int add3(int a, int b, int c) { // int 3 int
返すメソッド
　　 ３引数の値の和を返すreturn a + b + c; //
　}

（メソッドの呼び出し）p.161

・インスタンス変数と同様に、インスタンスを生成すると呼び出し可能になるのが基本
・インスタンス変数と同様に「インスタンス名 メソッド名 引数リスト 」と呼び出すことが可能. ()
・戻り値が ではない場合、戻り値を受け取って変数に格納したり、そのまま表示したりすることが可能void
・例：
class Sub {
　 利用自由で 型 引数をを受け取り 型の値をpublic int add3(int a, int b, int c) { // int 3 int
返すメソッド
　　 ３引数の値の和を返すreturn a + b + c; //
　}
}
class Center {
　：
　Sub s = new Sub();
　 メソッドの戻り値を変数の初期化に用いることもint sum = s.add3(1,2,3); //add3 OK
・通常のメソッドはインスタンス変数と同様に、インスタンス経由でアクセスされるので、インスタンスメソッドともいう
・メソッドに定義されている引数の数と型が呼び出しにおいてチェックされ、異なるとエラーになる
・なお、型が異なっても暗黙の変換が可能な場合はエラーにならない
・実引数と仮引数は名前は異なって良く、メソッドの汎用性を考えると異なる名前の方が良い
・実引数と仮引数は定義順に割り当てられる
・実引数の代わりに、値を直接記述しても良い

p.161 method01.cs

//p.161 method01.cs
using System;

メソッドを持つクラスclass MyClass { //
外部利用可能で戻り値型が で引数が 型２値の public int Add(int x, int y) { // int int

メソッドの定義Add
メソッド内部で定義されているのでローカル変数 int z; //

 z = x + y;
整数の和が格納された変数を指定することで、その値が返される return z; //

 }
}
class method01 {
 public static void Main() {

メソッドを持つクラスのインスタンスを生成 MyClass a = new MyClass(); //
合計用 int sum; //

インスタンス経由でメソッドを呼び、整数２値を渡し、戻り値を変 sum = a.Add(100, 200); //
数に代入
 Console.WriteLine("sum = {0}", sum);
 }
}

アレンジ演習：p.161 method01.cs

・メソッドに渡す整数２値を 固定ではなく コンソールから入力できるようにしよう(100, 200)

作成例

アレンジ演習：// p.161 method01.cs
using System;

メソッドを持つクラスclass MyClass { //
外部利用可能で戻り値型が で引数が 型２値の public int Add(int x, int y) { // int int

メソッドの定義Add

メソッド内部で定義されているのでローカル変数 int z; //
 z = x + y;

整数の和が格納された変数を指定することで、その値が返される return z; //
 }
}
class method01 {
 public static void Main() {

メソッドを持つクラスのインスタンスを生成 MyClass a = new MyClass(); //
合計用 int sum; //

： 【追加】コンソ Console.Write("x "); int x = int.Parse(Console.ReadLine()); //
ールから入力

： 【追加】コンソ Console.Write("y "); int y = int.Parse(Console.ReadLine()); //
ールから入力

【変更】インスタンス経由でメソッドを呼び、整数２値を渡し、戻り値を sum = a.Add(x, y); //
変数に代入
 Console.WriteLine("sum = {0}", sum);
 }
}

p.163 bmiclass.cs

//p.163 bmiclass.cs
using System;

計算用の部品クラスclass BMI { //BMI
身長 単位 ：外部から見えないインスタンス変数 private double blm; // (m)

利用自由なインスタンスメソッド 戻り値 public double Calc(double bl, double bw) { // (
有、引数２値)

引数 で受け取った身長 単位 をメートル単位に換算 blm = bl / 100.0; // bl (cm)
を計算して 体重 身長の２乗 返す return bw / Math.Pow(blm, 2.0); //BMI (÷)

 }
}
class bmiclass {
 public static void Main() {

入力用 string strBl, strBw; //
変換結果 double blcm, bwkg; //

身長 Console.Write(" (cm)---");
 strBl = Console.ReadLine();
 blcm = Double.Parse(strBl);

体重 Console.Write(" (kg)---");
 strBw = Console.ReadLine();
 bwkg = Double.Parse(strBw);

メソッドを持つ クラスのインスタンスを生成 BMI bmi = new BMI(); //Calc BMI
は です メソッドを呼 Console.WriteLine("BMI {0:#.##} ", bmi.Calc(blcm, bwkg)); //

んで戻り値を表示
 }
}

（値を返さないメソッド）p.164

・値を返さないメソッドでは、戻り値型を とする（省略不可）void
・値を返さないメソッドには、 は記述不要 記述しても良いreturn ()
・なお、メソッドを途中に を記述して、途中で打ち切ることも可能だが、実行されることがない文ができてreturn
しまうとエラーになる
・ な例：OK

　void foo(int a) {
　　 の時はここで打ち切ってif (a == 0) { return; } //0 OK
　　： これ以降は 以外の時に実行されるので // 0 OK
　}
・ な例：NG
　void foo(int a) {
　　：
　　 どんな場合もここで打ち切ってreturn; // OK
　　： これ以降は実行されないので // NG
　}
・なお、 のすべての は省略可能だが、記述しても良いp.165 noreturn.cs return
・値を返さないメソッドのメソッド末尾の は省略することが多いreturn
・メソッド途中の は省略可能な場合でも省略しないことがある（保守性が上がる）return

p.165 noreturnvalue.cs

//p.165 noreturnvalue.cs
using System;
class Kakeibo {

残高：外部から見えないインスタンス変数 private int total = 0; //
入金：戻り値のないインスタンスメソッド public void nyukin(int en) { //

 total += en;
円を入金しました Console.WriteLine("{0} ", en);

この後はないので省略可能 // return; //
 }

支出：戻り値のないインスタンスメソッド public void shishutsu(int en) { //
残高不足？ if (total < en) { //

円も支出できません Console.WriteLine("{0} ", en);
この後に しかないので省略可能 // return; // else

 } else {
 total -= en;

円を支出しました Console.WriteLine("{0} ", en);
この後は の終わりしかないので省略可能 // return; // else

 }
 }

残高照会：戻り値のないインスタンスメソッド public void gettotal() { //
 if (total == 0) {

残高はありません Console.WriteLine(" ");
この後に しかないので省略可能 // return; // else

 } else {
残高は 円です Console.WriteLine(" {0} ", total);

この後は の終わりしかないので省略可能 // return; // else
 }
 }
}
class noreturnvalue {
 public static void Main() {
 Kakeibo k = new Kakeibo();

⇒残高照会 残高はありません k.gettotal(); //
入金 円 k.nyukin(1000); // 1000

⇒残高照会 円です k.gettotal(); // 1000
入金 円 k.nyukin(2000); // 2000

⇒残高照会 円です k.gettotal(); // 3000
支出 円 k.shishutsu(500); // 500

⇒残高照会 円です k.gettotal(); // 2500
⇒支出 円 支出できません k.shishutsu(10000); // 10000

⇒残高照会 円です k.gettotal(); // 2500
 }
}

（カプセル化）p.166

・インスタンス変数のうち、外部から直接アクセスする必要がないものや、させない方が良いものは 指定private
すると良い
・外部から直接アクセスさせないように 指定して変数値が適切な状態に保つことをカプセル化というprivate
・例えば、身長や体重を正の数に制限したり、点数を から までに制限する場合などに用いる0 100
・この場合、必要に応じて 指定のインスタンス変数にアクセスするメソッドを記述し、この中で、アクセスprivate
内容を制限する
例：
　 体重：外部から見えないインスタンス変数private double bw; //
　 引数で体重を受け取って正の数public void setBw(double w) { if (w > 0) {bw = w;} } //
なら代入
　 体重を返すpublic double getBw() { return bw;} //
※ このようなメソッドをアクセッサといい、代入用をセッター、参照用をゲッターともいう
※ なお、 には、アクセッサの実装に便利なプロパティ という仕掛けがあり、プロパティを用いるのが基 C# (p.207)
本

コンストラクタp.167

・ 等でインスタンスの生成を行う時に、同時に実行したい処理を特殊な書式で記述することができるnew
・これがコンストラクタで、省略すると、自動的に中身がないコンストラクタが用意されて用いられる
・コンストラクタ＝構築なので、生成時に呼ばれる特殊なメソッドを指す
・コンストラクタを自前で記述することで、インスタンスの生成を行う時に実行したいことを書ける
・主に、データメンバの初期化や、開始処理などの記述に用いて「必ず実行させる」ことが可能
・なお、コンストラクタには名前はなく、クラス名で記述し、 指定で、戻り値はないpublic
・主な書式： クラス名 public () {…}
・「 クラス名 」で呼び出して欲しい場合はカッコ内は空にするnew ()
※　 引数を指定することも可能で、引数のない定義と両立できる（後述：オーバーロード）

p.167 construct01.cs

//p.167 construct01.cs
using System;
class MyClass {

外部から見えないインスタンス変数 int x; //
表示：インスタンスメソッド public void showx() { //

 Console.WriteLine("x = " + x);
 }

コンストラクタ public MyClass() { //
インスタンス変数の初期化 x = 10; //

に を代入しました Console.WriteLine("x 10 ");
 }
}
class construct01 {
 public static void Main() {

インスタンスの生成と共にコンストラクタを実行 MyClass mc = new MyClass(); //
インスタンスメソッドを実行 mc.showx(); //

 }

}

アレンジ演習：p.165 noreturnvalue.cs

・残高を で初期化する処理をコンストラクタで行うようにしよう0
・実行結果は変わらないので、テスト用にコンストラクタに「初期化しました」と表示する処理を加えよう

作成例

アレンジ演習：// p.165 noreturnvalue.cs
using System;
class Kakeibo {

【変更】残高：外部から見えないインスタンス変数 private int total; //
【以下追加】コンストラクタ public Kakeibo() { //

インスタンス変数を初期化 total = 0; //
初期化しました テスト用 Console.WriteLine(" "); //

 }
入金：戻り値のないインスタンスメソッド public void nyukin(int en) { //

 total += en;
円を入金しました Console.WriteLine("{0} ", en);

この後はないので省略可能 // return; //
 }

支出：戻り値のないインスタンスメソッド public void shishutsu(int en) { //
残高不足？ if (total < en) { //

円も支出できません Console.WriteLine("{0} ", en);
この後に しかないので省略可能 // return; // else

 } else {
 total -= en;

円を支出しました Console.WriteLine("{0} ", en);
この後は の終わりしかないので省略可能 // return; // else

 }
 }

残高照会：戻り値のないインスタンスメソッド public void gettotal() { //
 if (total == 0) {

残高はありません Console.WriteLine(" ");
この後に しかないので省略可能 // return; // else

 } else {
残高は 円です Console.WriteLine(" {0} ", total);

この後は の終わりしかないので省略可能 // return; // else
 }
 }
}
class noreturnvalue {
 public static void Main() {
 Kakeibo k = new Kakeibo();

⇒残高照会 残高はありません k.gettotal(); //
入金 円 k.nyukin(1000); // 1000

⇒残高照会 円です k.gettotal(); // 1000
入金 円 k.nyukin(2000); // 2000

⇒残高照会 円です k.gettotal(); // 3000
支出 円 k.shishutsu(500); // 500

⇒残高照会 円です k.gettotal(); // 2500
⇒支出 円 支出できません k.shishutsu(10000); // 10000

⇒残高照会 円です k.gettotal(); // 2500

 }
}

（引数のあるコンストラクタ）p.168

・コンストラクタに引数リストを記述することができる
・これにより、インスタンス変数の初期値を引数で渡すことが多い
・例：
　 引数のあるコンストラクタpublic Kakeibo(int t) { //
　　 インスタンス変数を引数の値で初期化total = t; //
　}
・引数のあるコンストラクタを呼び出すには、 のカッコ内に引数の値や式を記述するnew
・例：
　 インスタンスを生成し、残高を 円とするKakeibo k = new Kakeibo(10000); // 10000

アレンジ演習：p.165 noreturnvalue.cs

・残高を引数 で初期化する処理をコンストラクタで行うようにしようt
・上記の例の通り、インスタンスを生成し、残高を 円としよう10000

作成例

アレンジ演習：// p.165 noreturnvalue.cs
using System;
class Kakeibo {

残高：外部から見えないインスタンス変数 private int total; //
【変更】コンストラクタ public Kakeibo(int t) { //

【変更】インスタンス変数を引数で初期化 total = t; //
初期化しました テスト用 Console.WriteLine(" "); //

 }
入金：戻り値のないインスタンスメソッド public void nyukin(int en) { //

 total += en;
円を入金しました Console.WriteLine("{0} ", en);

この後はないので省略可能 // return; //
 }

支出：戻り値のないインスタンスメソッド public void shishutsu(int en) { //
残高不足？ if (total < en) { //

円も支出できません Console.WriteLine("{0} ", en);
この後に しかないので省略可能 // return; // else

 } else {
 total -= en;

円を支出しました Console.WriteLine("{0} ", en);
この後は の終わりしかないので省略可能 // return; // else

 }
 }

残高照会：戻り値のないインスタンスメソッド public void gettotal() { //
 if (total == 0) {

残高はありません Console.WriteLine(" ");
この後に しかないので省略可能 // return; // else

 } else {
残高は 円です Console.WriteLine(" {0} ", total);

この後は の終わりしかないので省略可能 // return; // else
 }
 }

}
class noreturnvalue {
 public static void Main() {

【変更】引数で残高の初期値を与える Kakeibo k = new Kakeibo(10000); //
残高照会 k.gettotal(); //
入金 k.nyukin(1000); //

残高照会 k.gettotal(); //
入金 k.nyukin(2000); //

残高照会 k.gettotal(); //
支出 k.shishutsu(500); //

残高照会 k.gettotal(); //
支出 k.shishutsu(10000); //

残高照会 k.gettotal(); //
 }
}

（コンストラクタのオーバーロード）p.168

・引数のないコンストラクタと、引数のあるコンストラクタを併記できる
・ において引数が指定されたかどうかによって、自動的に使い分けが行われるnew
・また、この時に、引数とコンストラクタの引数リストのチェックが行われ、引数の個数と型が一致しないとエラーに
なる
・このチェックがあるので、引数のあるコンストラクタを複数併記でき、呼び出しを一致するものが利用される
・この仕掛けをオーバーロード（多重定義）という
・また、チェックに用いる「引数の個数と型の並び」をシグニチャという
・定義例：
　 引数の無いコンストラクタpublic Kakeibo() { //
　　 インスタンス変数を で初期化total = 0; // 0
　}
　 型引数 個のあるコンストラクタpublic Kakeibo(int t) { //int 1 ①
　　 インスタンス変数を引数の値で初期化total = t; //
　}
　 型引数 個のあるコンストラクタpublic Kakeibo(int t, int u) { //int 2 ②
　　 インスタンス変数を引数の値で初期化total = t; //
　　 同上count = u; //
　}
・呼び出し例
　 インスタンスを生成し、引数の無いコンストラクタを呼ぶKakeibo n = new Kakeibo(); //
　 インスタンスを生成し、コンストラクタ を呼ぶKakeibo k = new Kakeibo(10000); // ①
　 インスタンスを生成し、コンストラクタ を呼ぶKakeibo m = new Kakeibo(20000, 3); // ②
・型の並びでも区別されるので、例えば、 と、public Kakeibo(int t, double d) public

は併記可能Kakeibo(double d, int t)

補足： における についてp.169 construct02.cs ToString()

・ は一種のメソッドで、 と同様に、 に対して指定でき、整数を文字列にした結ToString() int.Parse() int
果を返す
※ どちらも内部的には 型の 構造体 が持つオーバライドメソッド .NET System.Int32 (p.275) (p.230)

p.169 construct02.cs

//p.169 construct02.cs
using System;
class MyClass {

名前：外部から見えないインスタンス変数 private string name; //
年齢：外部から見えないインスタンス変数 private int age; //
住所：外部から見えないインスタンス変数 private string address; //

戻り値のないインスタンスメソッド public void Show() { //
メソッド内で用いるローカル変数 string toshi; //
年齢が になっていたら if (age == -1) { // -1

不明 toshi = " ";
 } else {

型から文字列化して代入 toshi = age.ToString(); //int
 }

氏名 住所 年齢 Console.WriteLine(" :{0} :{1} :{2}", name, address, toshi);
 }

引数のあるコンストラクタ 文字列 名前 public MyClass(string str) { // ①(:)
 name = str;

不定 住所は規定値 address = " "; //
年齢は規定値 age = -1; //

 }
引数のあるコンストラクタ 整数 年齢 public MyClass(int x) { // ②(:)

 age = x;
不明 名前は規定値 name = " "; //
不定 住所は規定値 address = " "; //

 }
引数のあるコンストラクタ 文字 public MyClass(string str1, string str2, int x) { // ③(

列 名前 文字列 住所 整数 年齢: , : , :)
 name = str1;
 address = str2;
 age = x;
 }
}
class construct01 {
 public static void Main() {

コンストラクタ が呼ばれる MyClass mc1 = new MyClass(18); // ②
粂井康孝 コンストラクタ が呼ばれる MyClass mc2 = new MyClass(" "); // ①
田中太郎 東京都 コンストラクタ が呼ばれ MyClass mc3 = new MyClass(" ", " ", 32); // ③

る
 mc1.Show();
 mc2.Show();
 mc3.Show();
 }
}

アレンジ演習：p.169 construct02.cs

・名前と年齢を引数で受け取るコンストラクタ を追加しよう④
・ メソッドにおいて、コンストラクタ を呼ぶ処理と、結果を表示する処理を追加しようMain ④

提出：アレンジ演習：p.169 construct02.cs

次回予告： 「デストラクタ」から再開しますp.171

