
講義メモ
・ 「暗黙の型指定がなされた配列」からp.147

提出：アレンジ演習：p.146 jagged02.cs

・２つある を２重ループにして見やすくしようfor
・ヒント：下記の を から まで繰返せばよい● 0 1

含まれる配列の要素数について繰返 for (int j = 0; j < name[●].Length; j++) { //
す

含まれる配列の要素を表示 Console.WriteLine(name[●][j]); //
 }

作成例

アレンジ演習：// p.146 jagged02.cs
using System;
class jagged02 {
 public static void Main() {

２次元 ジャグ配列の宣言と上位次元の要素 string[][] name = new string[2][]; //()
数＝含む配列の数は と指定2

田中 工藤 　 含まれる配列 の初期化 要素 name[0] = new string[2]{" ", " "}; // ① (2)
吉田 佐藤 池田 含まれる配列 の初期化 name[1] = new string[3]{" ", " ", " "}; // ② (3

要素)
含まれる配列数 について繰返す for (int i = 0; i < name.Length; i++) { // (2)

含まれる配列のそれぞれの要素 for (int j = 0; j < name[i].Length; j++) { //
数 について繰返す(2,3)

含まれる配列の要素を表示 Console.WriteLine(name[i][j]); //
 }
 }
 }
}

暗黙の型指定がなされた配列p.147

・ キーワードにより、初期化された変数の型を自動決定できるvar (p.61)
・これは、配列に対しても適用可能
・「 」や「 」などになるわけではなく、配列としての型になるvar [] var [][]
・書式例： 配列名 値 var = new []{ ,…};

p.147 var03.cs

//p.147 var03.cs
using System;
class var03
{
 public static int Main()
 {

太郎 次郎 三郎 四郎 は 型となる var name = new []{" ", " ", " ", " "}; //name string[]
は になる for (var i = 0; i < name.Length; i++) { //Length 4

 Console.WriteLine(name[i]);
 }

は 型になる var f = new[] { 0.5, 0.9, 1.5, 2.3 }; //f double
は になる for (var i = 0; i < f.Length; i++) { //Length 4

 Console.WriteLine(f[i]);

 }
の型は の型は Console.WriteLine("name {0}, na {1}", name.GetType(),

f.GetType()); //System.String[],System.Double[]
 return 0;
 }
}

アレンジ演習：p.146 jagged02.cs ②

・配列 を で暗黙の型指定ができるかどうか確認しようname var
・可能であり、 型になる。string[][]

作成例

アレンジ演習：// p.146 jagged02.cs
using System;
class jagged02 {
 public static void Main() {

２次元 ジャグ配列の宣言と上位次元の要素数＝含む var name = new string[2][]; //()
配列の数は と指定2

田中 工藤 　 含まれる配列 の初期化 要素 name[0] = new string[2]{" ", " "}; // ① (2)
吉田 佐藤 池田 含まれる配列 の初期化 name[1] = new string[3]{" ", " ", " "}; // ② (3

要素)
含まれる配列数 について繰返す for (int i = 0; i < name.Length; i++) { // (2)

含まれる配列のそれぞれの要素 for (int j = 0; j < name[i].Length; j++) { //
数 について繰返す(2,3)

含まれる配列の要素を表示 Console.WriteLine(name[i][j]); //
 }
 }
 }
}

１次元配列のソートp.148

・ が提供する というクラスがあり、配列を扱う便利なメソッド等を持っているC# Array
・その１つが で、引数として１次元配列名を指定すると、要素を昇順に整列するArray.Sort
・また、全要素を逆順にする もあり、 の後に実行することで降順の整列にできるArray.Reverse Array.Sort

p.148 sort01.cs

//p.148 sort01.cs
using System;
class sort01
{
 public static void Main()
 {
 string[] name = new string[5]{"Eric", "Peter", "Frank", "Kate",
"Thomas"};

全要素について for (int i = 0; i < name.Length; i++) { //
整列前を表示 Console.WriteLine(name[i]); //

 }
改行 Console.WriteLine(); //

昇順に整列 Array.Sort(name); //
全要素について for (int i = 0; i < name.Length; i++) { //

整列後を表示 Console.WriteLine(name[i]); //
 }

改行 Console.WriteLine(); //
逆順にする 後なので降順になる Array.Reverse(name); // (Sort)

全要素について for (int i = 0; i < name.Length; i++) { //
 Console.WriteLine(name[i]);
 }
 }
}

アレンジ演習 p.148 sort01.cs

・かなや漢字での動作を確認しよう
あ ぁ ア ァ 亜① new string[5]{" ", " ", " ", " ", " "};

⇒　 ァ、ぁ、ア、あ、亜 となる
一 二 三 四 五② new string[5]{" ", " ", " ", " ", " "};

⇒　 一、五、三、四、二 となる
「 」は 、「 」③ new double[5]{3.14, -3.14, 0.0, -1 / 0.0, 1 / 0.0}; // -1 / 0.0 -∞ 1 / 0.0

は∞
⇒　 、 、 、 、 となる -∞ -3.14 0 3.14 ∞

作成例③

アレンジ演習：// p.148 sort01.cs
using System;
class sort01
{
 public static void Main()
 {

あ ぁ ア ァ 亜 //string[] name = new string[5]{" ", " ", " ", " ", " "}; //①
一 二 三 四 五 //string[] name = new string[5]{" ", " ", " ", " ", " "}; //②

 double[] name = new double[5]{3.14, -3.14, 0.0, -1 / 0.0, 1 / 0.0}; //③
「 」は 、「 」は-1 / 0.0 -∞ 1 / 0.0 ∞

全要素について for (int i = 0; i < name.Length; i++) { //
整列前を表示 Console.WriteLine(name[i]); //

 }
改行 Console.WriteLine(); //

昇順に整列 Array.Sort(name); //
全要素について for (int i = 0; i < name.Length; i++) { //

整列後を表示 、 、 、 、 となる Console.WriteLine(name[i]); // -∞ -3.14 0 3.14 ∞
 }

改行 Console.WriteLine(); //
逆順にする 後なので降順になる Array.Reverse(name); // (Sort)

全要素について for (int i = 0; i < name.Length; i++) { //
 Console.WriteLine(name[i]);
 }
 }
}

文による反復処理p.150 foreach

・ 文の変型で「データ構造 コレクション に属する全データについて繰返す」のが、 文for () foreach
・配列を指定すると「配列の全要素について繰返す」となるので便利
・ では、作業用の変数を指定して、そこに１つずつデータ 要素値 が得られるforeach ()

・書式： 型 作業用の変数 配列等のコレクション名 作業用の変数を用いる処理 foreach(in) { }
※ 作業用の変数の型は、配列等のコレクションの型にするが、 にすることが多い var
※ 作業用の変数は要素値のコピーなので、値を書き換えても元の値には影響しない

p.150 foreach01.cs

//p.150 foreach01.cs
using System;
class foreach01
{
 public static void Main()
 {

犬 猫 雉 猿 string[] Animal = new string[]{" ", " ", " ", " "};
 int[] Num = new int[]{10, 20, 30, 40};

配列 の全要素について繰返す foreach (string str in Animal) { // Animal
 Console.WriteLine(str);
 }

改行 Console.WriteLine(); //
配列 の全要素について繰返す foreach (int i in Num) { // Num

 Console.WriteLine(i);
 }
 }
}

アレンジ演習 p.148 sort01.cs ②

・ を用いて簡略化しようforeach
・作業変数の型は にすることvar

アレンジ演習：// p.148 sort01.cs ②
using System;
class sort01
{
 public static void Main()
 {

ァ、ぁ、ア、あ、亜 //string[] name = new string[5]{ };
一 二 三 四 五 //string[] name = new string[5]{" ", " ", " ", " ", " "};

 double[] name = new double[5]{3.14, -3.14, 0.0, -1 / 0.0, 1 / 0.0};
「 」は 、「 」は// -1 / 0.0 -∞ 1 / 0.0 ∞

【変更】全要素について foreach (var w in name) { //
整列前を表示 Console.WriteLine(w); //

 }
改行 Console.WriteLine(); //

昇順に整列 Array.Sort(name); //
【変更】全要素について foreach (var w in name) { //
整列前を表示 Console.WriteLine(w); //

 }
改行 Console.WriteLine(); //
逆順にする 後なので降順になる Array.Reverse(name); // (Sort)

【変更】全要素について foreach (var w in name) { //
整列前を表示 Console.WriteLine(w); //

 }
 }
}

練習問題 ヒントp.152

・ を元にすると良いp.136 Average02.cs
・実行イメージから考えよう

受験者数：3
人目の点数：1 50
人目の点数：2 60
人目の点数：3 80
平均点は63.3
降順にすると
80
60
50

作成例

練習問題//p.152
using System;
class average02 {
 public static void Main() {

受験者数： Console.Write(" "); int no = int.Parse(Console.ReadLine());
型の配列 を受験者数の分生成 int[] point = new int[no]; //int point

合計 int sum = 0; //
※全要素について繰返す 要素値を書き換えるので for (int i = 0; i < no; i++) { // (

は不可foreach)
番： Console.Write("{0} ", i + 1); point[i] =

int.Parse(Console.ReadLine());
要素値を に足し込む sum += point[i]; // sum

 }
合計を件数で割って平均値を得る double average = (double)sum / no; //

平均点 平均値 小数点以下 桁 を Console.WriteLine(" = {0:##.#}", average); // (1)
表示

昇順に整列 Array.Sort(point); //
逆順にする 後なので降順になる Array.Reverse(point); // (Sort)

降順にすると Console.WriteLine(" ");
全要素について繰返す foreach (var w in point) { //

 Console.WriteLine(w);
 }
 }
}

第７章 クラスの基礎

クラスと何かp.153

・ などのオブジェクト指向言語では、プログラムをクラスを単位として作成し、データ構造もクラスを基本として扱C#
うことができる
※ のように、プログラムの一部をクラスを単位として作成するものもある C++
・プログラムはビルドして実行を指示することにより、記述内容に従った実体がメモリ上に生成されて動作する
・つまり、プログラム＝クラスは設計図にあたり、動作する実体をオブジェクトという
・この考え方を、クラスの中で用いるデータ構造や部品に当てはめることもできる
・つまり、プログラムにおいて、他のクラスの実体を生成して用いることが、プログラムの部品化にあたる

・なお、クラスから生成したオブジェクトをインスタンスともいう

簡単なクラスを定義しようp.154

・最も簡単なクラスは変数のみを持つクラスで、複数の変数を持つクラスにより、 でいう構造体に類似するC/C++
データ構造を表現できる
・書式： クラス名 アクセス修飾子 型 変数名 class { ; … }
・アクセス修飾子は主に と で、外部から直接アクセスを許す場合は と明示する。内部public private public
用の場合は無指定にするか、 と明示するじょうｋprivate
・例： 名前と class Monster { public string name; public int hp; public int mp; } //

を持つ怪物HP,MP
・クラスを型として変数を宣言することで、クラスから生成したインスタンスを扱うことができる
・生成には配列と同様に 演算子を用いるnew
・宣言の書式： クラス名 インスタンス名 ;
・生成の書式： インスタンス名 クラス名 = new ();
・宣言と生成は同時に行うことが可能。書式： クラス名 インスタンス名 クラス名 = new ();
　例： 怪物クラスから実体として を生成 Monster veldra = new Monster(); // veldra
・複数のインスタンスをまとめて生成できる
　例： 怪物クラスから実体とし Monster veldra = new Monster(), rimuru = new Monster(); //
て と を生成veldra rimuru
・クラスで定義した変数は、インスタンスごとに用意されるので、インスタンス名 変数名 でアクセスできる.
・クラスの中で定義したものをメンバといい、インスタンスの中の変数をインスタンス変数という
　例： ヴェルドラ veldra.name = " "; veldra.hp = 100; rimuru.mp = 500;
※「 」はドット演算子ともいい、日本語の「の」に近い.
・この仕組を用いるだけでも、変数のグループ化やデータの扱いの可視化が容易になる

p.156 simpleclass.cs

//p.156 simpleclass.cs
using System;

クラスを定義 インスタンス変数を 個もつ部品的なクラスclass myclass // (1)
{

外部からアクセス可能なインスタンス変数 public int x; //
}

実行用の メソッドを持つクラスclass simpleclass // Main
{
 public static void Main()
 {

部品的なクラスのインスタンスを生成 myclass mc = new myclass(); //
インスタンス名 メンバ名でインスタンス変数に数値を代入 mc.x = 10; // .

インスタンス名 メンバ名でインスタンス変数 Console.WriteLine("mc.x = {0}", mc.x); // .
の値を表示
 }
}

アレンジ演習：p.156 simpleclass.cs

・上記の例から以下を試そう：
名前と class Monster { public string name; public int hp; public int mp; } //

を持つ怪物HP,MP
怪物クラスから実体として を生成 Monster veldra = new Monster(); // veldra

ヴェルドラ veldra.name = " "; veldra.hp = 100;
・適当な表示処理を追加すること

作成例

アレンジ演習：// p.156 simpleclass.cs
using System;

クラスを定義 インスタンス変数を 個もつ部品的なクラスclass Monster // (3)
{

外部からアクセス可能なインスタンス変数 public string name; //
外部からアクセス可能なインスタンス変数 public int hp; //
外部からアクセス可能なインスタンス変数 public int mp; //

}
実行用の メソッドを持つクラスclass simpleclass // Main

{
 public static void Main()
 {

部品的なクラスのインスタンスを生成 Monster veldra = new Monster(); //
ヴェルドラ インスタンス名 メンバ名でインスタンス変数に値 文字列 を代 veldra.name = " "; // . ()

入
インスタンス名 メンバ名でインスタンス変数に数値を代入 veldra.hp = 100; // .

インスタンス名 メンバ名でインスタンス変数の値を表示 は初期値の // . (mp 0)
 Console.WriteLine("name = {0} hp = {1} mp = {2}", veldra.name,
veldra.hp, veldra.mp);
 }
}

（複数のインスタンスを生成）p.157

・メンバであるインスタンス変数は、インスタンスごとに存在する。よって、異なる変数として扱える
　例：
　 怪物クラスから実体としてMonster veldra = new Monster(), rimuru = new Monster(); //

と を生成veldra rimuru
　 ヴェルドラveldra.name = " "; veldra.hp = 100; veldra.mp = 500;
　 魔王リムルrimuru.name = " "; rimuru.hp = 900; rimuru.mp = 800;

p.157 simpleclass02.cs

//p.157 simpleclass02.cs
using System;

クラスを定義 インスタンス変数を 個もつ部品的なクラスclass MyClass // (1)
{

外部からアクセス可能なインスタンス変数 public int x; //
}
class simpleclass02
{
 public static void Main()
 {

部品的なクラスを型とするオブジェクト名を２つ宣言 MyClass a, b; //
部品的なクラスのインスタンスを生成してオブジェクト名 で扱う a = new MyClass(); // a
部品的なクラスの別のインスタンスを生成してオブジェクト名 で扱う b = new MyClass(); // b

に含まれるインスタンス変数 に代入 a.x = 10; //a x
に含まれるインスタンス変数 に代入 とは別のもの b.x = 100; //b x (↑)

別のものなので Console.WriteLine("a.x = {0}, b.x = {1}", a.x, b.x); // 10,100
となる
 }
}

アレンジ演習：p.157 simpleclass02.cs

・上記の例から以下を試そう：
名前と class Monster { public string name; public int hp; public int mp; } //

を持つ怪物HP,MP
　 怪物クラスから実体としてMonster veldra = new Monster(), rimuru = new Monster(); //

と を生成veldra rimuru
　 ヴェルドラveldra.name = " "; veldra.hp = 100; veldra.mp = 500;
　 魔王リムルrimuru.name = " "; rimuru.hp = 900; rimuru.mp = 800;
・適当な表示処理を追加すること

作成例

アレンジ演習：// p.157 simpleclass02.cs
using System;

クラスを定義 インスタンス変数を 個もつ部品的なクラスclass Monster // (3)
{

外部からアクセス可能なインスタンス変数 public string name; //
外部からアクセス可能なインスタンス変数 public int hp; //
外部からアクセス可能なインスタンス変数 public int mp; //

}
実行用の メソッドを持つクラスclass simpleclass // Main

{
 public static void Main()
 {

部品的なクラスのイ Monster veldra = new Monster(), rimuru = new Monster(); //
ンスタンスを つ生成2

インスタンス名 メンバ名でインスタンス変数に値 文字列、整数 を代入 // . ()
ヴェルドラ veldra.name = " "; veldra.hp = 100; veldra.mp = 500;
魔王リムル rimuru.name = " "; rimuru.hp = 900; rimuru.mp = 800;

インスタンス名 メンバ名でインスタンス変数の値を表示 // .
 Console.WriteLine("name = {0} hp = {1} mp = {2}", veldra.name,
veldra.hp, veldra.mp);
 Console.WriteLine("name = {0} hp = {1} mp = {2}", rimuru.name,
rimuru.hp, rimuru.mp);
 }
}

（クラス型の変数の特性）p.158

・クラスを型とする変数は参照型 となり、変数が持つのは参照 実体の位置情報 となる(p.40) ()
・よって、初期化や生成により、変数にインスタンスの参照が与えられる
・そして、クラスを型とする変数どうしの代入を行うと、参照がコピーされる
・この結果、２つの変数が同じインスタンスを参照するようになる
（２つ目の変数が別名と同じ働きをするようになる）
例：

インスタンスの生成 Monster rimuru = new Monster(); //
インスタンスの参照をコピー が の別名になる Monster maou = rimuru; // (maou rimuru)

 rimuru.hp = 10;
が表示される Console.WriteLine(maou.hp); //10

p.158 simpleclass03.cs

//p.158 simpleclass03.cs
using System;

クラスを定義 インスタンス変数を 個もつ部品的なクラスclass MyClass // (1)
{

外部からアクセス可能なインスタンス変数 public int x; //
}
class simpleclass03
{
 public static void Main()
 {

部品的なクラスを型とするオブジェクト名を２つ宣言 MyClass a, b; //
部品的なクラスのインスタンスを生成してオブジェクト名 で扱う a = new MyClass(); // a

に含まれるインスタンス変数 に代入 a.x = 10; //a x
が持つ参照を にコピー は と同じインスタンスを指すようになる b = a; //a b (b a)

よって 経由で の値が得られる Console.WriteLine("b.x = {0}", b.x); // b x
経由で の値を変更で る b.x = 100; //b x k

よって 経由で の値を見ると変更されている Console.WriteLine("a.x = {0}", a.x); // a x
 }
}

提出：アレンジ演習：p.157 simpleclass02.cs

次回予告： （ メソッドを含むクラス）p.159 Main

