
講義メモ
・ 「２次元配列」からp.137

提出フォロー：アレンジ演習：p.136 average02.cs

・配列の３要素の値をコンソールから入力するようにしよう
・ヒント 配列の初期化ではなく宣言と生成にする①
　例：int[] point = new int[3];
・ヒント コンソールからの入力は繰返しの中 に足し込む前 で行うと良い② (sum)
・ヒント 配列の要素は変数と同様に扱えるので、コンソールからの入力を要素に代入する③
　例： 番：Console.Write("{0} ", i); point[i] = int.Parse(Console.ReadLine());

作成例

アレンジ演習：// p.136 average02.cs
using System;
class average02 {
 public static void Main() {

【変更】 型の配列 を 要素で生成 int[] point = new int[3]; // int point 3
合計、要素数 int sum = 0, no; //
プロパティで配列の要素数を得る no = point.Length; //

を から要素数未満まで＝全要素について繰返す for (int i = 0; i < no; i++) { //i 0
番： Console.Write("{0} ", i); point[i] =

int.Parse(Console.ReadLine());
番の要素の値を に足し込む sum += point[i]; //i sum

 }
合計を件数で割って平均値を得る double average = (double)sum / no; //

合計 平均 合計値 Console.WriteLine(" = {0}, = {1:##.#}", sum, average); //
と平均値 小数点以下 桁 を表示(1)
 }
}

アレンジ演習： ・続きp.136 average02.cs

・入力された値を逆順にしよう
例： ， ， ならば ， ， にする10 20 30 30 20 10
・２つ方法があり、どちらでもOK
　 入力時に末尾の要素から格納①
　 全て格納してから反転する②

作成例①

アレンジ演習： ・続き 入力時に末尾の要素から格納// p.136 average02.cs ①
using System;
class average02 {
 public static void Main() {

型の配列 を 要素で生成 int[] point = new int[3]; //int point 3
合計、要素数 int sum = 0, no; //
プロパティで配列の要素数を得る no = point.Length; //

【変更】 を末尾から まで＝全要素について繰 for (int i = no - 1; i >= 0; i--) { // i 0
返す

番： Console.Write("{0} ", i); point[i] =
int.Parse(Console.ReadLine());

番の要素の値を に足し込む sum += point[i]; //i sum

 }
合計を件数で割って平均値を得る double average = (double)sum / no; //

合計 平均 合計値 Console.WriteLine(" = {0}, = {1:##.#}", sum, average); //
と平均値 小数点以下 桁 を表示(1)

【以下追加】 を から要素数未満まで＝全要素につ for (int i = 0; i < no; i++) { // i 0
いて繰返す

番： Console.WriteLine("{0} {1}", i, point[i]);
 }
 }
}

作成例②

アレンジ演習： ・続き 全て格納してから反転// p.136 average02.cs ②
using System;
class average02 {
 public static void Main() {

型の配列 を 要素で生成 int[] point = new int[3]; //int point 3
合計、要素数 int sum = 0, no; //
プロパティで配列の要素数を得る no = point.Length; //

を から要素数未満まで＝全要素について繰返す for (int i = 0; i < no; i++) { //i 0
番： Console.Write("{0} ", i); point[i] =

int.Parse(Console.ReadLine());
番の要素の値を に足し込む sum += point[i]; //i sum

 }
合計を件数で割って平均値を得る double average = (double)sum / no; //

合計 平均 合計値 Console.WriteLine(" = {0}, = {1:##.#}", sum, average); //
と平均値 小数点以下 桁 を表示(1)

【以下追加】要 int work = point[0]; point[0] = point[2]; point[2] = work; //
素 と の値を交換する[0] [2]

を から要素数未満まで＝全要素について繰返す for (int i = 0; i < no; i++) { //i 0
番： Console.WriteLine("{0} {1}", i, point[i]);

 }
 }
}

２次元配列p.137

・添字を２つ以上持つ配列を多次元配列といい、２つの場合は２次元配列
・ゲームのマップや行列型の情報の扱いに向いている
・ には多次元配列の実装方法が２種類あり、他の言語とは異なるので注意C#
・配列に格納されるデータを要素という
・（通常型の）２次元配列は２つの添え字の数の積の要素が格納できる
・例：添字 が 、添字 が であれば ＝ 要素分になる（ 表 ）① 2 ② 5 2×5 10 p.137 6.1
・配列は変数とは異なり、配列名の宣言の後で、要素の生成を行うと利用可能になる
・宣言の書式： データ型 配列名 [,] ;
・要素の生成の書式： 配列名 データ型 要素数 要素数 = new [①, ②];
・宣言と要素の生成は同時に行うことができる
　書式： データ型 配列名 データ型 要素数 要素数 [,] = new [①, ②];
・例： のマップの部屋ごとのモンスター数 int[,] MonsterMap = new int[100, 100]; //100×100
・２次元配列なので、要素の利用には２つの添字が必要
・よって、 文による繰り返しを２重化すると良いfor
・例：
　 ２種族３匹のモンスター名string[,] names = new string[2, 3]; //

　 ２種族の分、繰返すfor (int i = 0; i < 2; i++) { //
　　 各３匹の分、繰返すfor (int j = 0; j < 3; j++) { //
　　　name[i,j] = Console.ReadLine();
　　}
　}

p.138 array01.cs

//p.138 array01.cs
using System;
class array01 {
 public static void Main() {

２ ３の２次元配列を生成 int[,] MyArray = new int[2,3]; // ×
繰返し＆添字用 int i, j; //

要素に値を代入 MyArray[0, 0] = 1; //
　　〃 MyArray[0, 1] = 2; //
　　〃 MyArray[0, 2] = 3; //
　　〃 MyArray[1, 0] = 4; //
　　〃 MyArray[1, 1] = 5; //
　　〃 MyArray[1, 2] = 6; //

添字 の数だけ繰返す for (i = 0; i < 2; i++) { // ①
添字 の数だけ繰返す for (j = 0; j < 3; j++) { // ②

 Console.WriteLine("MyArray[{0}, {1}] = {2}",i, j, MyArray[i,
j]);
 }
 }
 }
}

アレンジ演習：p.138 array01.cs

・コンソールから添字 、添字 、値を入力するようにしよう① ②
・「続ける 」と表示して が入力されている間、上記を繰返し、 以外が入力されたら全データを表示しよう(y/n) y y
【発展課題】範囲を超える添字 が入力されたら再入力させる①②
ヒント：「 が入力されている間」も「再入力させる」も でループすると良いy do-while

作成例

アレンジ演習：// p.138 array01.cs
using System;
class array01 {
 public static void Main() {

２ ３の２次元配列を生成 int[,] MyArray = new int[2,3]; // ×
繰返し＆添字用 int i, j; //

 string ans = "";
 do {

添字 ： Console.Write(" ① "); i = int.Parse(Console.ReadLine());
添字 ： Console.Write(" ② "); j = int.Parse(Console.ReadLine());
値： Console.Write(" "); MyArray[i, j] = int.Parse(Console.ReadLine());

要素に格納//
続ける ： Console.Write(" (y/n) "); ans = Console.ReadLine();

 } while (ans == "y");
添字 の数だけ繰返す for (i = 0; i < 2; i++) { // ①

添字 の数だけ繰返す for (j = 0; j < 3; j++) { // ②

 Console.WriteLine("MyArray[{0}, {1}] = {2}",i, j, MyArray[i,
j]);
 }
 }
 }
}

作成例【発展課題】

アレンジ演習：// p.138 array01.cs
using System;
class array01 {
 public static void Main() {

２ ３の２次元配列を生成 int[,] MyArray = new int[2,3]; // ×
繰返し＆添字用 int i, j; //

 string ans = "";
入力の繰返し do { //

添字 入力の繰返し do { // ①
添字 ： Console.Write(" ① ");

 i = int.Parse(Console.ReadLine());
以上ならやりなおし } while (i >= 2); //2

添字 入力の繰返し do { // ②
添字 ： Console.Write(" ② ");

 j = int.Parse(Console.ReadLine());
以上ならやりなおし } while (j >= 3); //3

値： Console.Write(" "); MyArray[i, j] = int.Parse(Console.ReadLine());
要素に格納//

続ける ： Console.Write(" (y/n) "); ans = Console.ReadLine();
 } while (ans == "y");

添字 の数だけ繰返す for (i = 0; i < 2; i++) { // ①
添字 の数だけ繰返す for (j = 0; j < 3; j++) { // ②

 Console.WriteLine("MyArray[{0}, {1}] = {2}",i, j, MyArray[i,
j]);
 }
 }
 }
}

（２次元配列の初期化）p.138

・１次元配列と同様に、初期値を列挙することによる初期化が可能
・書式： 型 配列名 値 [,] = { { ,…}, … }
・例： ヴェルドラ ヴェルグリンド リムル シュナ ２ ２の配 string[,] names = { {" ", " "}, {" , " "} }; // ×
列
・要素数は省略できるが「 」の形式になる必要がある●×■
・例：
　 エラーになるint[,] MyArray = {{1, 2, 3}, {4, 5}}; //
　 エラーになるint[,] MyArray = new int[2, 3]{{1, 2, 3}, {4, 5}}; //
※　 テキスト の下から 行目の「初期値が設定されていない要素は で初期化」は誤りp.139 4 0

p.139 array02.cs

//p.139 array02.cs
using System;

class array02
{
 public static void Main()
 {

初期化で の配列になる int[,] MyArray = {{1, 2, 3}, {4, 5, 6}}; // 2×3
添字 の数だけ繰返す for (int i = 0; i < 2; i++) { // ①

添字 の数だけ繰返す for (int j = 0; j < 3; j++) { // ②
 Console.WriteLine("MyArray[{0}, {1}] = {2}", i, j, MyArray[i,
j]);
 }
 }
 }
}

についてp.140 array03.cs

・このプログラムでは入力チェックを３段階行っている
　 文字数が 以上ではないか① 2
　 先頭文字が数字以外ではないか②
　 範囲は正しいか クラスは ～ 、出席番号は ～③ (1 2 1 5)
・この で用いているのが、 文字列 番目 で、先頭を 番目として数えた 番目の文字が② Char.IsNumber(, n) 0 n
数字かどうかを返す。
・ は の 型で、文字を扱う構造体 第 章にて後述 として提供されている。 はこれにChar char .NET (11) IsNumber
含まれるメソッド。
・また、 で用いているのが、 文字列 で、これは、 文字列 と同じ意味③ Int32.Parse() int.Parse()
・ については 参照continue p.130

p.140 array03.cs

//p.140 array03.cs
using System;
class array03 {
 public static void Main() {

要素の文字列の配列 string[,] Name = new string[2, 5] { //2×5
田中六郎 吉田一郎 太田太郎 粂井康孝 岡田三郎 {" ", " ", " ", " ", " "},
横田芳子 池田和子 目黒貴和子 武田信子 園田淳子 {" ", " ", " ", " ", " "}

 };
組と出席番号 int MyClass, No; //

組と出席番号（入力用） string strClass, strNo; //
無限ループ while (true) { //
クラスは Console.Write(" ---");

 strClass = Console.ReadLine();
文字以上が入力された？ if (strClass.Length >= 2) { //2

入力は１桁のみです Console.WriteLine(" ");
以降をスキップして繰返し続行 continue; //

 }
文字目は数字か？ if (Char.IsNumber(strClass, 0) != true) { //1

数字を入力してください Console.WriteLine(" ");
以降をスキップして繰返し続行 continue; //

 }
整数に変換 範囲チェックのため MyClass = Int32.Parse(strClass); // ()

 if (MyClass <= 0 || MyClass >= 3) {
クラスは 組か 組です Console.WriteLine(" 1 2 ");

以降をスキップして繰返し続行 continue; //

 }
チェックを全て済ませたのでチェック完了としてループを抜ける break; //

 }
無限ループ while (true) { //
出席番号は Console.Write(" ---");

 strNo = Console.ReadLine();
文字以上が入力された？ if (strNo.Length >= 2) { //2

入力は１桁のみです Console.WriteLine(" ");
以降をスキップして繰返し続行 continue; //

 }
文字目は数字か？ if (Char.IsNumber(strNo, 0) != true) { //1

数字を入力してください Console.WriteLine(" ");
以降をスキップして繰返し続行 continue; //

 }
整数に変換 範囲チェックのため No = Int32.Parse(strNo); // ()

 if (No <= 0 || No >= 6) {
出席番号は 番から 番までです Console.WriteLine(" 1 5 ");

以降をスキップして繰返し続行 continue; //
 }

チェックを全て済ませたのでチェック完了としてループを抜ける break; //
 }

クラスの出席番号 番は さんです Console.WriteLine("{0} {1} {2} ", strClass, strNo,
Name[MyClass - 1, No - 1]);
 }
}

３次元以上の配列p.142

・ では次元数の制限はないC#
・３次元配列の宣言の書式： データ型 配列名 [,,] ;
・３次元配列の要素の生成の書式： 配列名 データ型 要素数 要素数 要素数 = new [①, ②, ③];
・宣言と要素の生成は同時に行うことができる
　書式： データ型 配列名 データ型 要素数 要素数 要素数 [,,] = new [①, ②, ③];
・３次元配列では、要素の利用には３つの添字が必要
・よって、 文による繰り返しを３重化すると良いfor
・例：
　 ２種族各３グループ各４匹のモンスター名string[,,] names = new string[2, 3, 4]; //
　 ２種族の分、繰返すfor (int i = 0; i < 2; i++) { //
　　 各３グループの分、繰返すfor (int j = 0; j < 3; j++) { //
　　　 各４匹の分、繰返すfor (int k = 0; j < 4; j++) { //
　　　　name[i, j, k] = Console.ReadLine();
　　　}
　　}
　}
・初期値を列挙することによる初期化が可能
・３次元配列初期化の書式： 型 配列名 値 [,,] = { { { ,…}, … }, … }
・例： int[,] n =
{{{1,2,3,4},{5,6,7,8},{9,10,11,12}},{{13,14,15,16},{17,18,19,20},{21,22,23,24}}}
;
・要素数は省略できるが「 」の形式になる必要がある●×■×▲

（次元数と要素数の取得）p.142

・配列の次元数は「配列名 」で得られる.Rank

・配列の全要素数は多次元配列においても「配列名 」で得られる.Length
・ 等にように、多次元配列で「配列名 添字 」で上位要素数を得ることはできないC/C++ [].Length

p.143 array04.cs

//p.143 array04.cs
using System;
class array04 {
 public static void Main() {

「 」は省略可 int[,,] ar = new int[2, 2, 3] { // new int[2, 2, 3]
 {

順に {0, 1, 2}, // [0,0,0][0,0,1][0,0,2]
順に {3, 4, 5} // [0,1,0][0,1,1][0,1,2]

 },
 {

順に {6, 7, 8}, // [1,0,0][1,0,1][1,0,2]
順に {9, 10, 11}// [1,1,0][1,1,1][1,1,2]

 }
 };

配列の次元 次元数を表示 Console.WriteLine(" = {0}", ar.Rank); //
の個数 要素数を表示 Console.WriteLine("ar = {0}", ar.Length); //

１番目の添字 for (int i = 0; i < 2; i++) { //
２番目の添字 for (int j = 0; j < 2; j++) { //

３番目の添字 for (int k = 0; k < 3; k++) { //
順に表示 Console.Write("{0}, ", ar[i, j, k]); //

 }
 }
 }

改行 Console.WriteLine(); //
 }
}

アレンジ演習：p.143 array04.cs

・４次元配列 にしよう[2,2,2,3]

作成例

アレンジ演習：// p.143 array04.cs
using System;
class array04 {
 public static void Main() {

「 」を省略 int[,,,] ar = { // new int[2, 2, 2, 3]
 {
 { {0, 1, 2},{3, 4, 5} },
 { {6, 7, 8},{9, 10, 11} },
 },
 {
 { {0, 1, 2},{3, 4, 5} },
 { {6, 7, 8},{9, 10, 11} },
 }
 };

配列の次元 次元数を表示 Console.WriteLine(" = {0}", ar.Rank); //
の個数 要素数を表示 Console.WriteLine("ar = {0}", ar.Length); //

１番目の添字 for (int i = 0; i < 2; i++) { //
２番目の添字 for (int j = 0; j < 2; j++) { //

３番目の添字 for (int k = 0; k < 2; k++) { //
４番目の添字 for (int l = 0; l < 3; l++) { //

順に表示 Console.Write("{0}, ", ar[i, j, k, l]); //
 }
 }
 }
 }

改行 Console.WriteLine(); //
 }
}

ジャグ配列p.144

・ における多次元配列のもう一つの様式で、配列の配列によって多次元配列を表すC#
・通常の多次元配列より記述が煩雑になるが、内側の要素数の異なる多次元配列を構築できるので、メモリ
の無駄を省くことができる
・以下は２次元のジャグ配列の場合：
・「 」ではなく、 等と同様に「 」で表す[,] C/C++/Java [][]
・ジャグ配列の例：a[0][0] a[0][1] a[1][0] a[2][0] a[2][1] a[2][2]
・ジャグ配列の宣言の書式： データ型 配列名 [][] ;
・ジャグ配列の要素の生成の書式：
　配列名 データ型 要素数 = new [①][];
　配列名 データ型 要素数 配列名 データ型 要素数[0] = new [②]; [1] = new [③]; …
・初期値を列挙することによる初期化が可能
・ジャグ配列初期化の書式：
　配列名 データ型 要素数 = new [①][];
　配列名 データ型 要素数 値 配列名 データ型 要素数 値[0] = new [②]{ ,…}; [1] = new [③]{ ,…}; …
・「 」の形式になる必要はない●×■
・配列の全要素数はジャグ配列においては「配列名 」では得られず、構成する配列数になる.Length
・「配列名 添字 」で各配列の要素数が得られる[].Length

p.144 jagged01.cs

//p.144 jagged01.cs
using System;
class jagged01 {
 public static void Main() {

２次元 ジャグ配列の宣言 int[][] ar; //()
上位次元の要素数＝含む配列の数は ar = new int[2][]; // 2
下位次元の要素数＝含まれる配列 の要素数は ar[0] = new int[3]; // ① 3
下位次元の要素数＝含まれる配列 の要素数は ar[1] = new int[3]; // ② 3

※下記の は含まれる２配列の要素数がどちらも３だから可能だが、そうとは限らない //
上位次元の要素数＝含む配列の数だけ繰返す for (int i = 0; i < 2; i++) { //

下位次元の要素数＝含まれる配列の要素数だ for (int j = 0; j < 3; j++) { //
※け繰返す（ ）

要素に値を代入 ar[i][j] = (i + 1) * (j + 1); //
 }
 }

上位次元の要素数＝含む配列の数だけ繰返す for (int i = 0; i < 2; i++) { //
下位次元の要素数＝含まれる配列の要素数だ for (int j = 0; j < 3; j++) { //

※け繰返す（ ）
 Console.WriteLine("ar[{0}][{1}] = {2}", i, j, ar[i][j]);

 }
 }
 }
}

p.146 jagged02.cs

//p.146 jagged02.cs
using System;
class jagged02 {
 public static void Main() {

２次元 ジャグ配列の宣言と上位次元の要素 string[][] name = new string[2][]; //()
数＝含む配列の数は の指定2

田中 工藤 　 含まれる配列 の初期化 要素 name[0] = new string[2]{" ", " "}; // ① (2)
吉田 佐藤 池田 含まれる配列 の初期化 name[1] = new string[3]{" ", " ", " "}; // ② (3

要素)
含まれる配列 の要素数について繰 for (int i = 0; i < name[0].Length; i++) { // ①

返す
含まれる配列 の要素を表示 Console.WriteLine(name[0][i]); // ①

 }
含まれる配列 の要素数について繰 for (int i = 0; i < name[1].Length; i++) { // ②

返す
含まれる配列 の要素を表示 Console.WriteLine(name[1][i]); // ①

 }
 }
}

提出：アレンジ演習：p.146 jagged02.cs

・２つある を２重ループにして見やすくしようfor
・ヒント：下記の を から まで繰返せばよい● 0 1

含まれる配列の要素数について繰返 for (int j = 0; j < name[●].Length; j++) { //
す

含まれる配列の要素を表示 Console.WriteLine(name[●][j]); //
 }

次回予告： 「暗黙の型指定がなされた配列」からp.147

