
講義メモ
・ 「 文と 文」からp.122 while do while

補足： の実行方法・改p.121 sin01.cs

・現在のバージョンの では１ページ分以上の表示を一気に行うと欠けが発生してしまうことがあVisual Studio
る
・そこで「ビルド」「ソリューションのビルド」を行ってから、「ツール」「コマンドライン」「開発者用コマンドプロンプト」を
用いると良い
・ここで、プログラムのあるプロジェクトのフォルダの中の フォルダにある ファイルを指定してbin/debug .exe
　「プロジェクト名 プロジェクト 」と入力すると動作する\bin\Debug\ .exe
例：「 」に対して「 」を入力しE:\ha234_C#_akiba\chap4> chap4\bin\Debug\chap4.exe Enter
・なお、実行確認後「 」で閉じることX

提出フォローアレンジ演習：p.121 sin01.cs

・サイン値の表示がすべて「 」から「 」の５桁になるようにしよう.00000 .99999
・「 」を「 」とすれば良い{0,7:#.#####}: {0,7:#.00000}:

作成例

アレンジ演習：// p.121 sin01.cs
using System;
class sin01
{
 public static void Main()
 {

カウンタとして用いる実数 double s; //
度から 度 まで 度 ずつ増やしながら繰返す //0.0 180 (Math.PI) 4 (Math.PI / 45.0)

 for (double a = 0.0; a <= Math.PI; a += Math.PI / 45.0) {
サイン値を得る s = Math.Sin(a); //

桁の小数点以下 桁で表示 Console.Write("{0,7:#.00000}:", s); //7 5
サイン値 につき を 個表示することでグラフを描く // 0.2 "*" 1

サイン値の 倍 小数点 for (int i = 1; i <= Math.Round(s * 50); i++) { // 50 (
以下四捨五入 だけ繰返す)

を 個表示 改行しない Console.Write("*"); //"*" 1 ()
 }

１行分終わったので改行 Console.WriteLine(); //
 }
 }
}

アレンジ演習： ・続きp.121 sin01.cs

・ を コサイン にしようSin Cos()
・ は 度から 度まで全て正の数だが、 は 度から 度までは負の数 まで になるSin 0 180 Cos 90 180 (-1)
・そこで、 値に して正の数 から までにしようCos +1 0 2
・そして「サイン値 につき を 個表示」を「コサイン値 につき を 個表示」とすれば良い0.2 "*" 1 0.4 "*" 1

作成例

アレンジ演習： ・続き// p.121 sin01.cs
using System;
class sin01

{
 public static void Main()
 {

カウンタとして用いる実数 double s; //
度から 度 まで 度 ずつ増やしながら繰返す //0.0 180 (Math.PI) 4 (Math.PI / 45.0)

 for (double a = 0.0; a <= Math.PI; a += Math.PI / 45.0) {
コサイン値を得る s = Math.Cos(a); //

桁の小数点以下 桁で表示 Console.Write("{0,7:#.00000}:", s); //7 5
コサイン値 につき を 個表示することでグラフを描く // 0.4 "*" 1

コサイン値 の for (int i = 1; i <= Math.Round((s + 1) * 25); i++) { // +1
倍 小数点以下四捨五入 だけ繰返す25 ()

を 個表示 改行しない Console.Write("*"); //"*" 1 ()
 }

１行分終わったので改行 Console.WriteLine(); //
 }
 }
}

文p.122 while

・ 文を継続条件のみのシンプルな形式にしたものが 文for while
・よって、 文で書ける繰り返しは、全て 文に置き換え可能for while
・主に、回数指定の繰返しは 文で、回数指定ではなく条件によっては 度も繰返さない可能性がある場合for 1
は 文で書くと良いwhile
・例：活きているモンスターがいる間繰返す いなければ繰り返しゼロ＝なにもしない()
・書式： 継続条件 繰り返し内容 while() { }
・よって、 初期処理 継続条件 毎回最後の処理 繰返し内容 は、 にすると、for(①, ②, ③) { ④} while
　初期処理 継続条件 繰返し内容 毎回最後の処理 となる①; while(②) { ④; ③ }
・ 文も 文も繰返し内容が１文のみの場合「 」は省略可能だが、チームルールによっては禁止。for while {}

p.124 while01.cs

//p.124 while01.cs
using System;
class while01 {
 public static void Main() {
 int i = 0;

の値が 未満である間、繰返す while (i < 100) { //i 100
 Console.WriteLine("i = {0,3}", i);
 i++;
 }
 }
}

アレンジ演習：p.124 while01.cs

・ 文で書き直そうfor

作成例

アレンジ演習：// p.124 while01.cs
using System;
class while01 {
 public static void Main() {

の値が から 未満である間、 しつつ繰返す for (int i = 0; i < 100; i++) { //i 0 100 +1
 Console.WriteLine("i = {0,3}", i);
 }
 }
}

文を使った無限ループp.125 while

・ 文を用いて「 」としても無限ループになるが「 」としても良いfor for(;;) while(true)
※ どちらを使うかチームルールで決めることが多い
・なお、 では「 」という文法でも無限ループに出来るが では禁止C/C++ while(1) C#

p.125 menu01.cs

//p.125 menu01.cs
using System;
class menu01 {
 public static void Main() {

終了フラグをオフにしておく bool bEnd = false; //
無限ループ while (true) { //

 Console.WriteLine("***** Menu *****");
終了 Console.WriteLine("0: ");
ファイル Console.WriteLine("1: ");
編集 Console.WriteLine("2: ");

 Console.WriteLine("****************");
選択 Console.Write(" ---- ");

 string strAns = Console.ReadLine();
 switch (strAns) {
 case "0":

終了フラグをオンにする bEnd = true; //
構造を抜ける 必須 break; //switch ()

 case "1":
ファイルが選択されました Console.WriteLine(" ");

構造を抜ける 必須 break; //switch ()
 case "2":

編集が選択されました Console.WriteLine(" ");
構造を抜ける 必須 break; //switch ()

 default:
入力に間違いがあります Console.WriteLine(" ");

構造を抜ける 必須 break; //switch ()
 }

改行 Console.WriteLine(); //
終了フラグがオン？ if (bEnd) { //

それでは、このプログラムを終了します Console.WriteLine(" ");
ループから脱出する break; //while

 }
 }
 }
}

文p.127 do-while

・ 文と 文はどちらも１回目の繰り返しの前に継続するか判断するので、１度も行わない場合がある処if while
理では便利

・これらを前判定繰返しという
・対して１回目の繰り返しの後に継続するか判断するのが後判定繰り返しで、 文があるdo-while
・よって「やってみないと繰返すかどうか決まらない」場合に便利
・また「適切な値が入力されるまで繰返す」場合にも便利
・書式：
　 繰り返し開始do { //
　　繰り返し内容
　 継続条件 セミコロンが必須 文と区別するためにも必要} while(); ← (while)

p.128 do_while01.cs

//p.128 do_while01.cs
using System;
class do_while01 {
 public static void Main() {
 int i = 10;

繰り返し開始 do { //
 Console.WriteLine("i = {0}", i);

継続条件 超ならば繰返す } while (i > 20); // (20)
 }
}

アレンジ演習：p.128 do_while01.cs

・コンソールから整数を入力することを正の数 超 が得られるまで繰返すプログラムに書き換えよう(0)

作成例

アレンジ演習：// p.128 do_while01.cs
using System;
class do_while01 {
 public static void Main() {
 int i;

繰り返し開始 do { //
 Console.Write("i = "); i = int.Parse(Console.ReadLine());

継続条件 以下ならば繰返す } while (i <= 0); // (0)
 }
}

アレンジ演習：p.125 menu01.cs

・ の代わりに にしてみようwhile do while

作成例

アレンジ演習：// p.125 menu01.cs
using System;
class menu01 {
 public static void Main() {

の継続条件に用いるので外で定義 string strAns; //do-while
ループ開始 do { //

 Console.WriteLine("***** Menu *****");
終了 Console.WriteLine("0: ");
ファイル Console.WriteLine("1: ");

編集 Console.WriteLine("2: ");
 Console.WriteLine("****************");

選択 Console.Write(" ---- ");
 strAns = Console.ReadLine();
 switch (strAns) {
 case "0":

それでは、このプログラムを終了します Console.WriteLine(" ");
構造を抜ける 必須 break; //switch ()

 case "1":
ファイルが選択されました Console.WriteLine(" ");

構造を抜ける 必須 break; //switch ()
 case "2":

編集が選択されました Console.WriteLine(" ");
構造を抜ける 必須 break; //switch ()

 default:
入力に間違いがあります Console.WriteLine(" ");

構造を抜ける 必須 break; //switch ()
 }

改行 Console.WriteLine(); //
終了が選ばれていない間、繰返す } while(strAns != "0"); //

 }
}

文p.128 goto

・通常、業務においては利用が禁止されているか、推奨されないので割愛

文p.130 continue

・ 文を繰り返しの中（ただし の中を除く）に記述すると、繰り返しを中止できる。break case
・対して、今回の繰り返しの残り部分をスキップし、次の繰り返しに進むのが 続行 文continue()
・主に、繰り返しの中に 文などを用いた複雑な分岐がある場合に用いるif
・単純な内容であれば、 文で書いた方がわかりやすいことが多いif

p.130 continue01.cs

から 未満の２の倍数の合計を求める//p.130 continue01.cs --- 0 100
using System;
class continue01 {
 public static void Main() {

合計用 int sum = 0; //
から 未満について繰返す for (int i = 0; i < 100; i++) { //0 100

を で割って余りが かどうか 偶数かどうか if (i % 2 == 0) { //i 2 0 ()
 sum += i;

が奇数の場合 } else { //i
後続の処理をスキップして次の繰返しへ continue; //

 }
が奇数の場合は されるので次の行は実行されない //i continue

 Console.WriteLine("i = {0, 2}, sum = {1, 4}", i, sum);
 }

合計は です Console.WriteLine(" {0} ", sum);
 }
}

アレンジ演習：p.130 continue01.cs

・「 」を用いずに同じ処理になるようにしようcontinue;

作成例

アレンジ演習： から 未満の２の倍数の合計を求める// p.130 continue01.cs --- 0 100
using System;
class continue01 {
 public static void Main() {

合計用 int sum = 0; //
から 未満について繰返す for (int i = 0; i < 100; i++) { //0 100

を で割って余りが かどうか 偶数かどうか if (i % 2 == 0) { //i 2 0 ()
 sum += i;
 Console.WriteLine("i = {0, 2}, sum = {1, 4}", i, sum);
 }
 }

合計は です Console.WriteLine(" {0} ", sum);
 }
}

練習問題１ ヒントp.132

・ ＝体重 身長 身長 なので、これが となる体重は：BMI ÷(×) 22
⇒　 ＝体重 身長 身長 体重＝ 身長 身長 で得られる22 ÷(×) 22× ×

・ただし、この身長はメートル単位なので、センチメートル単位にする必要がある
・よって、体重＝ 身長 身長22×(cm÷100)×(cm÷100)
・この式に身長を から についてインクリメントしながら繰り返し、身長と体重を表示すれば良い160cm 180cm

≦・ 文にして、初期処理を「身長 」、継続条件を「身長 」、繰返し後処理を「身長 」、処理内容for ←160 180 ++
を「身長と体重＝ 身長 身長 を表示」とすれば良い22×(cm÷100)×(cm÷100)
・身長と体重は 型が適切double

作成例

練習問題//p.132 1
using System;
class continue01 {
 public static void Main() {

身長 から につい for (double height = 160; height <= 180; height++) { // 160 180
て繰返す

この身長で double weight = 22 * (height / 100) * (height / 100); //
な体重を得るBMI22

身長 体重 Console.WriteLine(" = {0}, = {1}", height, weight);
 }
 }
}

練習問題２ ヒントp.132

・コンソールから整数 を入力することを繰返し、 以上の値が入力されたら抜ける。（ が良い）n 1 do-while
・合計用の変数 を で初期化しておくsum 0
・カウント用の変数 の初期値を にして、 以下である間、 しながら、（ が良い）i 1 n +1 for
　・ に変数 の初期値を足し込むsum i
・繰り返しを終えたら、 の値を表示しようsum

作成例

練習問題//p.132 2
using System;
class ex0502 {
 public static void Main() {

入力用と合計用の変数 int n, sum = 0; //
 do {

以上の整数： Console.Write("1 "); n = int.Parse(Console.ReadLine());
未満である間、繰返す やりなおす } while (n < 1); //1 ()

カウント用の変数 の初期値を にして、 以下である for (int i = 1; i <= n; i++) { // i 1 n
間、 しながら繰返す+1

合計に足し込む sum += i; //
 }

合計 Console.WriteLine(" = {0}", sum);
 }
}

第６章 配列

配列とはp.133

・データの全てに変数名を付けるのではなく、同じ型のデータをグループにして名前を付け、何番目かを指定して
用いる仕掛けが配列
・グループの名前を配列名、何番目かを指定する番号を添字、インデックスという
・また、配列を構成するデータ１つずつを要素という
・利用には変数と同様に、定義が必要だが、その前に配列名を宣言する必要があり、データ型も明示する
・宣言書式： 型 配列名 [] ;
・例： string[] monstername;
・配列の定義 生成 は変数の場合と同様に必要な領域の確保なので、要素何個分かも明示する()
・定義 生成 書式： 配列名 型 要素数() = new [];
・例： モンスター 体分の配列を定義 生成 monstername = new string[100]; // 100 ()
・配列の宣言と定義 生成 はまとめて行うことも可能()
・宣言と定義 生成 の書式： 型 配列名 型 要素数() [] = new [];
・例： string[] monstername = new string[100];
・要素へのアクセスは、配列名 添字 で行う。添字は から要素数 までなので注意。[] 0 -1
・例： ヴェルドラ リムル monstername[0] = " "; monstername[1] = " ";
・変数の初期化と同様に、配列の宣言と初期値の設定を同時にすることが可能で、この時、初期値の数だけ
要素が作られるので要素数は指定不要
・初期化の書式： 型 配列名 初期値 初期値 [] = { ①, ②, …};
・例： ヴェルドラ リムル 要素数は になる string[] monstername = {" ", " "}; // 2
・配列はオブジェクト 後述 として扱われるので、プロパティ 後述 の仕掛けを持っている。これにより、配列名() () .

とすることで、要素数が得られるLength

p.136 average02.cs

//p.136 average02.cs
using System;
class average02 {
 public static void Main() {

型の配列 を 要素で初期化 int[] point = {70, 80, 50}; //int point 3
合計、要素数 int sum = 0, no; //
プロパティで配列の要素数を得る no = point.Length; //

を から要素数未満まで＝全要素について繰返す for (int i = 0; i < no; i++) { //i 0
番の要素の値を に足し込む sum += point[i]; //i sum

 }
合計を件数で割って平均値を得る double average = (double)sum / no; //

合計 平均 合計値 Console.WriteLine(" = {0}, = {1:##.#}", sum, average); //
と平均値 小数点以下 桁 を表示(1)
 }
}

提出：アレンジ演習：p.136 average02.cs

・配列の３要素の値をコンソールから入力するようにしよう
・ヒント 配列の初期化ではなく宣言と生成にする①
　例：int[] point = new int[3];
・ヒント コンソールからの入力は繰返しの中 に足し込む前 で行うと良い② (sum)
・ヒント 配列の要素は変数と同様に扱えるので、コンソールからの入力を要素に代入する③
　例： 番：Console.Write("{0} ", i); point[i] = int.Parse(Console.ReadLine());

次回予告： 「２次元配列」からp.137

