
講義メモ
・「【補足】 文等のネスト」の実例を示してから、 「 文」に進みますif p.115 for

【補足】 文等のネスト：再掲載if

・ 文や 文の中にさらに 文や 文を記述できる。これをネスト 入れ子 というif switch if switch ()
例：正の数が入力されたら、もう１つの整数を入力させ、どちらも正の数のなら「どちらも正」と表示する。
　あてはまらない場合はなにも表示しない。
　 正の数？ もう１つ入力 正の数？ 「どちらも正」と表示if () { : if () { } }
※ なお、 文のネストはどうしても必要な場合を除いて避けた方が良い switch

ミニ演習 mini114.cs

・上の例をプログラムにしよう

ミニ演習// mini114.cs
using System;
class mini114
{
 public static void Main()
 {

整数 ： 整数 Console.Write(" ① "); int n1 = int.Parse(Console.ReadLine()); //
入力

正の数？ if (n1 > 0) { //
整数 ： Console.Write(" ② "); int n2 = int.Parse(Console.ReadLine()); //

整数入力
正の数？ のネスト if (n2 > 0) { // (if)

どちらも正 Console.WriteLine(" ");
 }
 }
 }
}

【補足】 文等のネスト：つづきif

・ 文等のネストでは「 」や「 」がどの「 」に対するものなのか見間違いやすくなるので注意if else else if if
・インデントが正しければ 、 が高さで判別できるif-else if-elseif-else

悪い例：

ミニ演習 悪い例// mini114.cs
using System;
using System.Diagnostics.Eventing.Reader;

class mini114
{
 public static void Main()
 {

整数 ： 整数 Console.Write(" ① "); int n1 = int.Parse(Console.ReadLine()); //
入力

正の数？ if (n1 > 0) { //
整数 ： Console.Write(" ② "); int n2 = int.Parse(Console.ReadLine()); //

整数入力
正の数？ のネスト if (n2 > 0) { // (if)

どちらも正 Console.WriteLine(" ");
インデントが正しくないと } // …

外側の の終わりのインデントもおかしくなる } // if
外側の に対する なのだが else { // if else …

これはどちらの の ？ Console.WriteLine(" if else ");
 }
 }
}

ミニ演習 正しい例// mini114.cs
using System;
using System.Diagnostics.Eventing.Reader;

class mini114
{
 public static void Main()
 {

整数 ： 整数 Console.Write(" ① "); int n1 = int.Parse(Console.ReadLine()); //
入力

正の数？ if (n1 > 0) { //
整数 ： Console.Write(" ② "); int n2 = int.Parse(Console.ReadLine()); //

整数入力
正の数？ のネスト if (n2 > 0) { // (if)

どちらも正 Console.WriteLine(" ");
 }

内側の に対する else { // if else
整数 は正の数だが、整数 が正の数ではない Console.WriteLine(" ① ② ");

 }
 }

外側の に対する else { // if else
整数 が正の数ではない Console.WriteLine(" ① ");

 }
 }
}

文p.115 for

・ には４種類の繰り返し構造文があり、主に回数指定繰り返しに向くのが 文C# for
・構文： 前処理 継続条件式 毎回の末尾で行う処理 繰り返し内容 for(① ; ② ; ③) { ④ }
・前処理：繰返し開始前に行うこと。主に回数カウンタのクリアがある。省略可。
・継続条件式： 型を返す式。主にカウンタの値の上限や下限と比較する文。省略可。bool
・毎回の末尾で行う処理：繰り返し内容の最後の文の後に行うこと。主にカウントアップやカウントアップ。省略
可。
・よって、この繰り返しは の順で行われ、 の結果によって中断できる① ②④③ ②④③ ②④③ … ②
・例：５回繰返す場合： 繰り返し内容 int i; for(i = 0; i < 5; i++) { }
・なお、繰り返し内容が１文しかない時、 を省略できるが、推奨されないことも多い{}

p.115 for01.cs

//p.115 for01.cs
using System;
class for01
{
 public static void Main()

 {
カウンタ用の変数 int i; //

カウンタを にする カウンタが 未満なら を繰返す カウ for (i = 0; i < 5; i++) { //① 0 ② 5 ④③ ④
ントアップ

繰り返し内容 初回は 回目は Console.WriteLine("i = {0}", i); //③ ("i = 0",2
回目は"i = 1"…,5 "i = 4")

 }
 }
}

の動作についてp.115 for01.cs

でカウンタ用の変数が宣言される01. int i;
でカウンタ用の変数が になる02. i = 0;① 0
⇒ で なので繰り返し継続決定03. i < 5;② 0 < 5; true

⇒ で 「 」を04. Console.WriteLine("i = {0}", i);③ Console.WriteLine("i = 0"); i = 0
表示

でカウンタ用の変数が されて になる05. i++④ +1 1
⇒ で なので繰り返し継続決定06. i < 5;② 1 < 5; true

⇒ で 「 」を07. Console.WriteLine("i = {0}", i);③ Console.WriteLine("i = 1"); i = 1
表示

でカウンタ用の変数が されて になる08. i++④ +1 2
⇒ で なので繰り返し継続決定09. i < 5;② 2 < 5; true

⇒ で 「 」を10. Console.WriteLine("i = {0}", i);③ Console.WriteLine("i = 2"); i = 2
表示

でカウンタ用の変数が されて になる11. i++④ +1 3
⇒ で なので繰り返し継続決定12. i < 5;② 3 < 5; true

⇒ で 「 」を13. Console.WriteLine("i = {0}", i);③ Console.WriteLine("i = 3"); i = 3
表示

でカウンタ用の変数が されて になる14. i++④ +1 4
⇒ で なので繰り返し継続決定15. i < 5;② 4 < 5; true

⇒ で 「 」を16. Console.WriteLine("i = {0}", i);③ Console.WriteLine("i = 4"); i = 4
表示

でカウンタ用の変数が されて になる17. i++④ +1 5
⇒ で なので繰り返し終了決定18. i < 5;② 5 < 5; false

p.116 for02.cs

//p.116 for02.cs
using System;
class for02
{
 public static void Main()
 {

カウンタ用の変数 int i; //
カウンタを にする カウンタが 以上なら を繰返す カ for (i = 4; i >= 0; i--) { //① 4 ② 0 ④③ ④

ウントダウン
 Console.WriteLine("i = {0}", i); //"i = 4","i = 3","i = 2","i =

の順に表示1","i = 0",
 }
 }
}

補足：カウンタ用の変数の初期化の場所について 最下行(p.118)

・カウンタ用の変数を のブロックの中でのみ用いる場合、 の頭で初期化して良い（予め宣言しなくて良for for
い）
例：

カウンタを にする カウンタが 以上なら を繰返す カウントfor (int i = 4; i >= 0; i--) { //① 4 ② 0 ④③ ④
ダウン
 Console.WriteLine("i = {0}", i); //"i = 4","i = 3","i = 2","i = 1","i = 0",
の順に表示
}
・このカウンタ用の変数は を抜けると無効になるので便利だが、 を抜けた後でも利用したい場合は、予めfor for
宣言しておくこと
例：
int i;

カウンタを にする カウンタが 以上なら を繰返す カウントダウンfor (i = 4; i >= 0; i--) { //① 4 ② 0 ④③ ④
 Console.WriteLine("i = {0}", i); //"i = 4","i = 3","i = 2","i = 1","i = 0",
の順に表示
}

終了時の になるConsole.WriteLine(" i = {0}", i); //-1

ループからの脱出p.112 for

・ を構成する３要素の内、条件式を省略すると無限ループになるfor
※　 すべてを省略して「 」としても で、無限ループになる for (;;) OK
・この場合、繰り返し内部の任意の場所に「 」を記述することで、ループから脱出できる 繰り返しの後続break (
の処理はスキップされる)
・これは、ループからの脱出であり、その後に記述があれば実行される

p.117 for03.cs

//p.117 for03.cs
using System;
class for03
{
 public static void Main()
 {
 int i = 0;

無限ループ for (; ;) { // !!
 Console.WriteLine("i = {0}", i);

メソッドが実行されたら を 増やす i++; // WriteLine i 1
が 以上になったら 文で脱出 if (i >= 5) { // i 5 break

ループを抜ける break; //for
 }
 }
 }
}

アレンジ演習：p.117 for03.cs

・ループ終了時の の値を表示しようi

作成例

アレンジ演習：// p.117 for03.cs
using System;

class for03
{
 public static void Main()
 {
 int i = 0;

無限ループ for (; ;) { // !!
 Console.WriteLine("i = {0}", i);

メソッドが実行されたら を 増やす i++; // WriteLine i 1
が 以上になったら 文で脱出 if (i >= 5) { // i 5 break

ループを抜ける break; //for
 }
 }

終了時の 【追加】 になる Console.WriteLine(" i = {0}", i); // 5
 }
}

p.118 for04.cs

//p.118 for04.cs
using System;
class for04
{
 public static void Main()
 {
 int i;

継続条件式のみ省略できる（無限ループになる） for (i = 0; ; i++) { //
 if (i >= 5) {

ループを抜ける break; //
 }
 Console.WriteLine("i = {0}", i);
 }
 }
}

アレンジ演習：p.118 for04.cs

・ の値を から までカウントアップし、すぐに までカウントダウンしようi 0 4 0

作成例

アレンジ演習：// p.118 for04.cs
using System;
class for04
{
 public static void Main()
 {
 int i;

について繰返す for (i = 0; i < 4; i++) { //i=0,1,2,3
 Console.WriteLine("i = {0}", i);
 }

※について繰返す 事前処理は不要 for (; i >= 0; i--) { //i=4,3,2,1,0
 Console.WriteLine("i = {0}", i);
 }
 }

}

ループのネストp.119 for

・ 文の中に 文を記述できる。これもネスト 入れ子 というfor for ()
・繰返し文の中に繰返し文を書くことで２重ループが実現する
・ ループのネストは 回 回の繰り返しに便利で、２次元の情報を扱う時に用いることが多いfor N ×M
・主に、外側の繰り返しの用のカウンタには を、内側の繰り返しの用のカウンタには を使うことが多いi j
・なお、カウンタを同じ変数にすると想定外の動作になる（通常、無限ループする）ので注意
・実行イメージ
　for(int i = 0①; i < 3②; i++⑦) {
　　for(int j = 0③; j < 2④; j++⑥) {
　　　Console.Write("[{0},{1}]", i, j);⑤
　　}
　}
　①②③④⑤[0,0] ⑥④⑤[0,1] ⑥④⑦②③④⑤[1,0] ⑥④⑤[1,1] ⑥④⑦②③④⑤[2,0] ⑥④⑤[2,1] ⑥④⑦②

p.119 kuku01.cs

//p.119 kuku01.cs
using System;
class kuku01
{
 public static void Main()
 {

外側用カウンタ、内側用カウンタ int i, j; //
外側用カウンタで について繰返す for (i = 1; i <= 9; i++) { // 1,2,3,4,5,6,7,8,9

内側用カウンタで について繰 for (j = 1; j <= 9; j++) { // 1,2,3,4,5,6,7,8,9
返す
 Console.WriteLine("{0} * {1} = {2}", i, j, i * j);
 }

段の区切りを表示 Console.WriteLine("------------"); //
 }
 }
}

アレンジ演習：p.119 kuku01.cs

・式を略して、積だけを段ごとに表示し、段の後ろで改行しよう（段の区切りの代わりに改行）
・積は 桁で表示すること3
 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
：（略）

作成例

アレンジ演習：// p.119 kuku01.cs
using System;
class kuku01
{
 public static void Main()
 {

外側用カウンタ、内側用カウンタ int i, j; //

外側用カウンタで について繰返す for (i = 1; i <= 9; i++) { // 1,2,3,4,5,6,7,8,9
内側用カウンタで について繰 for (j = 1; j <= 9; j++) { // 1,2,3,4,5,6,7,8,9

返す
積を３桁表示し改行しない Console.Write("{0, 3}", i * j); //

 }
段の区切りで改行 Console.WriteLine(); //

 }
 }
}

（ クラス）p.121 Math

・ が提供する算術系クラス 情報の構造体の一種で詳細は 章で の一つが で、その中に算術計算にC# (7) Math
便利なメソッドや定数などが用意されている
・利用には「 」を前置する。Math.
・定数 ：円周率を提供する定数 型Math.PI (double)
・メソッド ラジアン値 ：サインを返すメソッド 型 。カッコ内に角度を表すラジアン値をMath.Sin() (double)

型で指定するdouble
※ メソッドの呼び出しにおいてカッコ内に指定する値や式を引数という（後述）
・ラジアン値は 度を円周率とした値で、 度のラジアン値は で得られる180 n n / 180 * Math.PI
※ ⇒では 度のラジアン値を 円周率 として扱っている sin01.cs 4 4÷180× Math.Pi / 45.0
※ そして、 度から 度まで 度ずつ繰返す 文になっている 0 180 4 for
・メソッド 実数 ：小数点以下を四捨五入した結果を返すメソッド 型 。Math.Round() (double)

⇒　例： となる Math.Round(3.8) 4.0

p.121 sin01.cs

//p.121 sin01.cs
using System;
class sin01
{
 public static void Main()
 {

カウンタとして用いる実数 double s; //
度から 度 まで 度 ずつ増やしながら繰返す //0.0 180 (Math.PI) 4 (Math.PI / 45.0)

 for (double a = 0.0; a <= Math.PI; a += Math.PI / 45.0) {
サイン値を得る s = Math.Sin(a); //

桁の小数点以下 桁で表示 Console.Write("{0,7:#.#####}:", s); //7 5
サイン値 につき を 個表示することでグラフを描く // 0.2 "*" 1

サイン値の 倍 小数点 for (int i = 1; i <= Math.Round(s * 50); i++) { // 50 (
以下四捨五入 だけ繰返す)

を 個表示 改行しない Console.Write("*"); //"*" 1 ()
 }

１行分終わったので改行 Console.WriteLine(); //
 }
 }
}

補足： の実行方法p.121 sin01.cs

・現在のバージョンの では１ページ分以上の表示を一気に行うと欠けが発生してしまうVisual Studio
・そこで「ビルド」「ソリューションのビルド」までを で行い、実行はコマンドプロンプトで行うと良いVisual Studio
・コマンドプロンプトは「すべてのアプリ」「 ツール」にあるのでダブルクリックWindows
・ここで、プログラムのあるプロジェクトのフォルダの中の フォルダにある ファイルを指定するbin/debug .exe

例：E:\ha234_C#_akiba\chap4\chap4\bin\Debug\chap4.exe
・実行例：

C:\Users\human>E:\ha234_C#_akiba\chap4\chap4\bin\Debug\chap4.exe
 :
 .06976:***
 .13917:*******
 .20791:**********
 .27564:**************
 .34202:*****************
 .40674:********************
 .46947:***********************
 .52992:**************************
 .58779:*****************************
 .64279:********************************
 .69466:***********************************
 .74314:*************************************
 .78801:***************************************
 .82904:***
 .86603:***
 .89879:***
 .92718:**
 .95106:**
 .9703:***
 .98481:***
 .99452:**
 .99939:**
 .99939:**
 .99452:**
 .98481:***
 .9703:***
 .95106:**
 .92718:**
 .89879:***
 .86603:***
 .82904:***
 .78801:***************************************
 .74314:*************************************
 .69466:***********************************
 .64279:********************************
 .58779:*****************************
 .52992:**************************
 .46947:***********************
 .40674:********************
 .34202:*****************
 .27564:**************
 .20791:**********
 .13917:*******
 .06976:***

アレンジ演習：p.121 sin01.cs

・サイン値の表示がすべて「 」から「 」の５桁になるようにしよう.00000 .99999
・「 」を「 」とすれば良い{0,7:#.#####}: {0,7:#.00000}:

・実行結果

C:\Users\human>E:\ha234_C#_akiba\chap4\chap4\bin\Debug\chap4.exe
 .00000:
 .06976:***
 .13917:*******
 .20791:**********
 .27564:**************
 .34202:*****************
 .40674:********************
 .46947:***********************
 .52992:**************************
 .58779:*****************************
 .64279:********************************
 .69466:***********************************
 .74314:*************************************
 .78801:***************************************
 .82904:***
 .86603:***
 .89879:***
 .92718:**
 .95106:**
 .97030:***
 .98481:***
 .99452:**
 .99939:**
 .99939:**
 .99452:**
 .98481:***
 .97030:***
 .95106:**
 .92718:**
 .89879:***
 .86603:***
 .82904:***
 .78801:***************************************
 .74314:*************************************
 .69466:***********************************
 .64279:********************************
 .58779:*****************************
 .52992:**************************
 .46947:***********************
 .40674:********************
 .34202:*****************
 .27564:**************
 .20791:**********
 .13917:*******
 .06976:***

提出：アレンジ演習：p.121 sin01.cs

次回予告： 「 文と 文」から再開しますp.122 while do while

