
講義メモ
・ 「 」からp.52 type07.cs

型（再掲載）p.50 decimal

・ は 進数のことで、実数を内部的２進数で扱う 型に比べて、誤差が出づらいdecimal 10 float/double
・ただし、 個に ビット用いるのでメモリの消費量に注意1 128
・初期化に用いる実数値も同じ扱いをする必要があるので、末尾に または を付けて示す必要があるM m
　例： 型扱いの値で、 型の変数を初期化 decimal d = 3.14M; //decimal decimal
・扱える値の範囲は から で、 型より狭いが、 型より広いdecimal.MinValue decimal.MaxValue float long
・符号なし 型は無いdecimal

//p.52 type07.cs
using System;
class type07
{
 public static void Main()
 {

型の変数の定義 decimal total; //decimal
借入金額 Console.Write(" ---");

⇒型 型変換 decimal a = decimal.Parse(Console.ReadLine()); //string decimal
利息 Console.Write(" (%)---");

⇒型 型変換 decimal p = decimal.Parse(Console.ReadLine()); //string decimal
型の変数の演算なので も 型扱いにする decimal r = p / 100M; //decimal 100 decimal
型の変数の演算なので も 型扱いにする で total = a * (1m + r); //decimal 1 decimal (1M

もOK)
期間後の元利合計は です 通貨書式で表示 Console.WriteLine("1 {0:c} ", total); //

利息を加えた結果を次の元金とする a = total; //
型の変数の演算なので も 型扱いにする で total = a * (1m + r); //decimal 1 decimal (1M

もOK)
期間後の元利合計は です 通貨書式で表示 Console.WriteLine("2 {0:c} ", total); //

利息を加えた結果を次の元金とする a = total; //
型の変数の演算なので も 型扱いにする で total = a * (1m + r); //decimal 1 decimal (1M

もOK)
期間後の元利合計は です 通貨書式で表示 Console.WriteLine("3 {0:c} ", total); //

利息を加えた結果を次の元金とする a = total; //
型の変数の演算なので も 型扱いにする で total = a * (1m + r); //decimal 1 decimal (1M

もOK)
期間後の元利合計は です 通貨書式で表示 Console.WriteLine("4 {0:c} ", total); //

 }
}

文字型p.53

・ 型：１文字分の情報＝ なので バイト ビット を持つデータ型char Unicode 2 (16)
・文字リテラル：プログラム中で文字を記述するもの。 シングルコーテーション で囲む。'()
・初期化の書式： 変数名 文字 例： 猫 は、ひらがな、漢字でも char = ' '; // char c = ' ';(C# OK)
・ は文字型にも対応しているので、文字や文字型の変数をそのまま指定できConsole.Write/WriteLine
る。

p.54 type08.cs

// type08.cs
using System;

class type08
{
 public static void Main()
 {

猫 で わ か る char a = ' ', b = ' ', c = ' ', d = ' ', e = ' ',
プ ロ グ f = 'C', g = '#', h = ' ', i = ' ', j = ' ',

ラ ミ ン グ 文字型の変数の初期化 k = ' ', l = ' ', m = ' ', n = ' '; //
改行せずに表示 Console.Write(a); //

 Console.Write(b);
 Console.Write(c);
 Console.Write(d);
 Console.Write(e);
 Console.Write(f);
 Console.Write(g);
 Console.Write(h);
 Console.Write(i);
 Console.Write(j);
 Console.Write(k);
 Console.Write(l);
 Console.Write(m);
 Console.Write(n);

改行 Console.WriteLine(); //
 }
}

（ 番号による指定）p.54 Unicode

・文字リテラルにおいて、 で始まる 進数を シングルコーテーション で囲むことで、 番号による指\u 16 '() Unicode
定が可能

⇒・例： 猫 例： 「猫」の文字コードは char c = ' '; char c = '\u732B'; // 732B
・なお、「 」の代わりに 進数を意味する「 」をつけても同じ結果になる\u 16 \x
・また、 進数に変換した結果の前に「 」をつけても同じ結果になる シングルコーテーションは不要10 (char) ()
・この「 型 」をキャストといい、型変換をサポートとする。文字は だが、文字列には非対応なので を用() OK parse
いる

⇒・例： 猫 例： 「猫」の文字コードは 進数 char c = ' '; char c = (char)29483; // 732B=10
29483
・ のフォーマット指定子 は文字型にも対応しているので、 のConsole.Write/WriteLine (p.28) type08.cs
ように１文字ずる列記する必要はない

p.54 type09.cs

//p.54 type09.cs
using System;
class type09
{
 public static void Main()
 {

指定 char a = '\u732B'; //Unicode
進数指定 char b = '\x3067'; //16

も 文字リテラル char c = ' '; //
進数指定 char d = (char)12431; //10

指定 char e = '\u304B'; //Unicode
進数指定 char f = '\x308B'; //16

 Console.WriteLine("{0}{1}{2}{3}{4}{5}", a, b, c, d, e, f);

 }
}

アレンジ演習：type08a.cs

・ を参考にして、フォーマット指定子を用いて短くしようtype09.cs
※　 「猫でもわかる」まででOK

作成例

アレンジ演習：// type08.cs
using System;
class type08
{
 public static void Main()
 {

猫 で も わ か る 文字型の char a = ' ', b = ' ', c = ' ', d = ' ', e = ' ', f = ' '; //
変数の初期化
 Console.WriteLine("{0}{1}{2}{3}{4}{5}", a, b, c, d, e, f);
 }
}

エスケープ文字p.55

・すでに学習した改行を示す「 」などは文字と同じ扱いのエスケープ文字とされる\n
・シングルクォーテーションや、ダブルクォーテーション、円マークなどを文字として用いる場合は「 」「 」「 」を\" \' \\
用いると良い
・文字列の中に「 」を挿入して、表示時に改行させることできる\n

p.56 escape01.cs

//p.56 escape01.cs
using System;
class escape01
{
 public static void Main()
 {

文字変数を改行文字で初期化 char n = '\n'; //
今日は 文字列変数 string str1 = " "; //
よい天気です 〃 string str2 = " "; //

文字列と改行文字を連結すると文字列になる Console.WriteLine(str1 + n + str2); //
今日は よい天気です 途中に改行文字のある文字列 string str3 = " \n "; //

表示すると途中で改行する Console.WriteLine(str3); //
 }
}

アレンジ演習：p.56 escape01a.cs

・１行追加して、文字列「 は です」がこの通り表示できるように指定しよう"Let's Go" \1000

作成例

アレンジ演習：// p.56 escape01a.cs
using System;

class escape01
{
 public static void Main()
 {

文字変数を改行文字で初期化 char n = '\n'; //
今日は 文字列変数 string str1 = " "; //
よい天気です 〃 string str2 = " "; //

文字列と改行文字を連結すると文字列になる Console.WriteLine(str1 + n + str2); //
今日は よい天気です 途中に改行文字のある文字列 string str3 = " \n "; //

表示すると途中で改行する Console.WriteLine(str3); //
は です 【追加】「 」「 」が必要 Console.WriteLine("\"Let's Go\" \\1000 "); // \" \\

 }
}

論理型p.57

・ は 言語とは異なり、真理値（真偽値）を表すための型として 型が提供されているC# C bool
・また、 型の変数に代入したり初期化などに利用できる論理型リテラルとして 真 、 偽 がbool ,true() false()
提供されている
・例： フラグをオンにする 立てる bool flag = true; // ()
・なお、これに伴い、 で可能な「非 を真とし、 を偽とする」ことは では禁止。C/C++ 0 0 C#
・ 型の 型 は「 」bool NET (p.42) System.Boolean
・ が提供する「変数名 」を用いると、その変数の 型情報を返してくれるので、これをC# .GetType() .NET

などで表示することができるConsole.WriteLine
・例： 「 」と表示 bool a; Console.Write(a.GetType()); // System.Boolean
・ が提供する「変数名 」を用いると、変数の内容を示す文字列を返してくれるので、これをC# .ToString()

などで表示することができるConsole.WriteLine
・なお、 型で値が であれば「 」、 であれば「 」となる。bool true True false False
・実は、 は自動的に動作するもので「 」としても「 」が表示されるToString() Console.Write(a); True

p.57 bool01.cs

//p.57 bool01.cs
using System;
class bool01
{
 public static void Main()
 {

論理型の変数 を真で初期化 bool a = true; // a
論理型の変数 を偽で初期化 bool b = false; // b

「 」と表 Console.WriteLine("a = {0}, b = {1}", a, b); // a = True, b = False
示

は 「 は 」と表示 Console.WriteLine("a {0}", a.GetType());// a System.Boolean
は文字列にすると「 」 「 」と表示 Console.WriteLine("a {0} ", a.ToString()); // True
は文字列にすると「 」 「 」と表示 Console.WriteLine("b {0} ", b.ToString()); // False

 }
}

アレンジ演習：p.57 bool01a.cs

・２行追加して「論理型変数 文字列」が可能かどうか、可能であれば型と結果を表示しよう +

アレンジ演習：// p.57 bool01.cs
using System;

class bool01
{
 public static void Main()
 {

論理型の変数 を真で初期化 bool a = true; // a
論理型の変数 を偽で初期化 bool b = false; // b

「 」と表 Console.WriteLine("a = {0}, b = {1}", a, b); // a = True, b = False
示

は 「 は 」と表示 Console.WriteLine("a {0}", a.GetType());// a System.Boolean
は文字列にすると「 」 「 」と表示 Console.WriteLine("a {0} ", a.ToString()); // True
は文字列にすると「 」 「 」と表示 Console.WriteLine("b {0} ", b.ToString()); // False
型です 【追加】「 型です」と表示 Console.WriteLine(a + " "); // True
型です 【追加】「 」と表示 Console.WriteLine((a + " ").GetType()); // System.String

 }
}

リテラルp.58

・プログラム中に記述された値のこと、整数リテラル、実数リテラル、文字リテラル、文字列リテラル、論理リテラル
がある。
・リテラルの型は表記法とサフィックス 接尾語 で決まる。()
・整数リテラルはサフィックスがなければ 型 型 型 型 値の大きさによる 。int →uint →long →ulong ()
　 を付けると 型、 を付けると 型、 を付けると 型。L/l long U/u uint UL/ul ulong
・実数リテラルはサフィックスがなければ 型。 を付けると 型、 を付けると 型。double F/f float M/m decimal
・文字リテラルは 型char
・文字列リテラルは 型string
・論理リテラルは 型bool

メソッドp.59 Object.GetType

・前に「 」とつくものは、自動的に利用可能になっているメソッドなどを示すObject.
・ メソッドの対象はリテラルや式でも良いGetType
・なお、単項 演算子は優先度が低いのでカッコで囲み「 」のように指定しすれば良い- (-10).GetType()

p.60 literal01.cs

//p.60 literal01.cs
using System;
class literal01
{
 public static void Main()
 {

の型は 型で です 共通で用いるフォーマット指定 string format = "{0} .NET {1} "; //
 Console.WriteLine(format, "100", 100.GetType()); //System.Int32(int)
 Console.WriteLine(format, "100U", 100U.GetType());
//System.UInt32(uint)
 Console.WriteLine(format, "100L", 100L.GetType());
//System.Int64(long)
 Console.WriteLine(format, "100UL", 100UL.GetType());
//System.UInt64(ulong)
 Console.WriteLine(format, "1.25", 1.25.GetType());
//System.Double(double)
 Console.WriteLine(format, "1.25F", 1.25F.GetType());
//System.Single(float)

 Console.WriteLine(format, "1.25M", 1.25M.GetType());
//System.Decimal(decimal)
 Console.WriteLine(format, "10F", 10F.GetType());
//System.Single(float)
 Console.WriteLine(format, "10D", 10D.GetType());
//System.Double(double)
 Console.WriteLine(format, "10M", 10M.GetType());
//System.Decimal(decimal)
 Console.WriteLine();
 Console.WriteLine(format, "-10D", (-10D).GetType());
//System.Double(double)
 }
}

暗黙の型指定p.61

・初期化によって型を確定できる場合、型名の代わりに「 」を指定すると、型が自動的に推定されるvar
・例： は 型になる var p = 3; //p int
・例： は 型になる var f = true; //f bool
・なお、無を表す を初期値に出来るが、 では型を確定できないので対象外。null null
・どの型になったのかは メソッドで確認できるGetType()
※ を積極的に利用するかどうかは実務ではチームルールで決めていることがある var

【補足】 、 についてp.62 var01.cs p.63 dynamic01.cs

・「 」となっているが、この内容ではいつもの「public static int Main() public static void
」として良いMain()

・合わせて「 」は不要return 0;

//p.62 var01.cs
using System;
class var01
{

※テキストでは だが で良い public static void Main() // int void
 {

猫でもわかる プログラミング 第 型になる var mytext = " C# "; //string
型になる var no = 3; //int

版 型になる var myc = ' '; //char
連結して 型になる Console.WriteLine(mytext + no + myc); // string

の型は で、 の型は で、 の型は です Console.WriteLine("mytext {0} no {1} myc {2} ",
 mytext.GetType(), no.GetType(), myc.GetType()); //String,Int32,Char
 }
}

提出：アレンジ演習：p.56 escape01b.cs

・４つある変数をすべて 型にして動作を確認しようvar

次回予告： 「 型」から再開します。p.62 Dynamic

