
 [memo20231021.txt]

 講義メモ
 ・p.23「変数を使ってみる（代入とデータ型）」から再開します

 提出フォロー：アレンジ演習：p.17 myname01.cs

 ・Console.WriteLineメソッドはMainの中にいくつでも記述できる
 ・２つ記述すると２行表示される
 ・そこで、「私の名前は●●」の下に「またの名を●●」と表示するようにしよう

 作成例

 //アレンジ演習： myname01.cs
 using System;
 class MyName01 {
 public static void Main() {
 Console.WriteLine("私の名前はシャア");
 Console.WriteLine("またの名を赤い彗星");
 }
 }

 p.23 変数を使ってみる（代入とデータ型）」

 ・C#では、整数用であるint型の変数に実数(小数点のある値)は代入できない(エラーにな
 る
)
 ・なお、宣言と同時に値を代入する「初期化」が可能で、誤って何も入っていない変数を
 使ってしまわないにように、初期化が推奨される場合がある
 ・初期化の書式： データ型 変数名 = 初期値; //宣言と同時に値を代入
 　例： int hp = 100; //int型の変数hpを値100で初期化
 　※ 他の変数の値や式の結果で初期化することもできる
 ・複数の同型の変数を同時に宣言し、その全部または一部を初期化することもできる
 　例： int hp = 100, mp; //int型の変数hpを値100で初期化、変数mpは宣言のみ
 　例： int hp = 100, mp = hp, level = hp / 10; //int型の変数hpを値100で、mpは
 hpの値で、levelはその1/10で初期化
 ・変数名のルール：英大文字小文字、数字、「_」、２バイト文字(漢字)が利用可だが、
 先頭は数字不可。また、２バイト文字(漢字)や先頭の「_」はチームルールによっては推
 奨されない。
 　※ 他の言語では「-」「@」「$」などが利用可能な場合があり、コンバートでは注意。
 ・プログラムの文法上、変数名などに使えない単語がキーワード(予約語)で、C#のキーワ
 ードはすべて小文字。
 ・なお、予約語と同じ綴りで大文字にしたものは利用可能だが、チームルールによっては
 推奨されない。
 ・また、予約語の前に「@」を付けると変数名に使えるとあるが、推奨されない。

 p.25 変数のデータを表示する

 ・Console.WriteLine(変数名) とすると、変数に格納されている値が表示される
 　例： int hp = 100; Console.WriteLine(hp); //「100」と表示
 ・Console.WriteLine(式) とすると、式の計算結果が表示される
 　例： int hp = 100; Console.WriteLine(hp + 20); //「120」と表示
 ・加算が可能な式で「+」を指定すると加算になるが、どちらかまたは両方が"文字列"だ
 と連結になる
 　例： Console.WriteLine(3 + "倍速い"); //「3倍速い」と表示
 　例： Console.WriteLine("HPは" + hp + "です"); //「HPは100です」と表示

 【演習ガイド】前回USBメモリに格納したC#プロジェクトをVisual Studioで開くには

 - 1 -

 [memo20231021.txt]

 ① Visual Studio起動
 ②「プロジェクトやソリューションを開く」
 ③ 保存済のプロジェクトのフォルダ(例：Project1)にある「プロジェクト名.sln」をク
 リックして「開く」

 ※画面上に「0個の参照」というCodeLensメッセージが表示されて邪魔に感じたら、下記
 の手順で非表示にできる
 　①「ツール」「オプション」
 　②「テキストエディタ」「すべての言語」「CodeLens」
 　③「CodeLensを有効にする」のチェックを外して「OK」
 ※Visual Studioの画面構成を初期状態に戻したい場合①「ウィンドウ」「ウィンドウレ
 イアウトのリセット」「はい」

 p.25 text01.cs

 //p.25 text01.cs
 using System;
 class Text01 {
 public static void Main() {
 int a = 10, b = 20, total; //int型の変数a,bを初期化し、cを宣言
 total = a + b; //変数aと変数bの値の和を変数totalに代入(この"+"は加算)
 Console.WriteLine(a + " + " + b + " = " + total); //3変数値と文字列を連
 結し表示
 }
 }

 p.26 変数のデータを表示する（式の値を表示）

 ・計算結果の値を連結することもできる
 ・この場合は先に計算する必要があるので、式をカッコで囲むこと
 ・例： 10 + " - " + 3 + " = " + (10 - 3) ⇒ "10 - 3 = 7"となる("+"はすべて連結)

 p.26 text02.cs

 //p.16 text02.cs
 using System;
 class Text02 {
 public static void Main() {
 int a = 10, b = 20; //int型の変数a,bを初期化
 Console.WriteLine(a + " + " + b + " = " + (a + b)); //2変数値と式の値を
 連結し表示
 }
 }

 アレンジ演習：p.26 text02.cs

 ・p.26にある通り「a + " + " + b + " = " + a + b」とすると誤った結果になることを
 確認しよう
 ・理由は：
 　①「a + " + "」で連結されて「"10 + "」となる
 　②「a + " + " + b」で連結されて「"10 + 20"」となる
 　③「a + " + " + b + " = "」で連結されて「"10 + 20 = "」となる
 　④「a + " + " + b + " = " + a」で連結されて「"10 + 20 = 10"」となる
 　⑤「a + " + " + b + " = " + a + b」で連結されて「"10 + 20 = 1020"」となる

 作成例

 - 2 -

 [memo20231021.txt]

 //アレンジ演習：p.16 text02.cs
 using System;
 class Text02 {
 public static void Main() {
 int a = 10, b = 20; //int型の変数a,bを初期化
 Console.WriteLine(a + " + " + b + " = " + a + b); //2変数値とaとbの値を
 連結し表示
 }
 }

 p.27 WriteLineメソッドとWriteメソッド

 ・Console.WriteLineメソッドはカッコ内に(引数として)指定された内容を表示して改行
 する
 ・改行の必要がなく、次の表示をその後ろからにしたい場合はConsole.Writeメソッドを
 用いると良い
 例：
 Console.Write("円周率は");
 Console.WriteLine(3.141592653258979); //「円周率は3.141592653258979」と表示して
 改行
 ・また、改行だけを行うにはConsole.WriteLine();を用いると良い

 p.27 text03.cs

 //p.27 text03.cs
 using System;
 class Text03 {
 public static void Main() {
 Console.Write("あ"); //文字列を表示(改行しない)
 Console.Write("い"); //文字列を表示(改行しない)
 Console.Write("う"); //文字列を表示(改行しない)
 Console.Write("え"); //文字列を表示(改行しない)
 Console.Write("お"); //文字列を表示(改行しない)
 Console.WriteLine(); //改行のみ
 }
 }

 p.28 フォーマット指定子を使った変数の表示

 ・連結によって文字列を編集して表示する手法は「+」を連結に用いるために見づらくな
 る
 ・そこで、予め値を埋め込む穴を番号付きで指定して、第２引数以降で値や式を記述でき
 る
 ・これに用いる書式をフォーマット指定子といい、穴は{0},{1},{2},…といくつで指定で
 きる
 ・例： Console.WriteLine("1 + 2 = {0}", 3); //「1 + 2 = 3」と表示
 ・例： Console.WriteLine("{0} + {1} = 3", 1, 2); //「1 + 2 = 3」と表示
 ・例： Console.WriteLine("{0} + {1} = {2}", 10, 20, 10 + 20); //「10 + 20 = 30」
 と表示
 ・例： Console.WriteLine("{0}倍速い！", 3); //「3倍速い！」と表示
 ・穴の番号は必ずゼロからにすること。なお、再利用も可能。
 ・例： Console.WriteLine("{0}倍速いので{0}倍先に行ける！", 3); //「3倍速いので
 3倍先に行ける！」と表示
 ・穴の番号のことを「引数の番号」ともいう

 p.28 text04.cs

 - 3 -

 [memo20231021.txt]

 //p.28 text04.cs
 using System;
 class Text04 {
 public static void Main() {
 int x = 10;
 Console.WriteLine("x = {0}", x); //「x = 10」を表示
 Console.WriteLine("x = {0}, xの10倍は{1}です", x, x * 10);
 Console.WriteLine("{0}は{1}ですが、{2}は{1}ではありません", "猫", "哺乳
 類", "トカゲ
 ");
 }
 }

 p.29 桁数の指定

 ・フォーマット指定子で引数の番号の後に「,表示桁数」を指定できる。ただしこれは「
 最低桁数」であり、表示する値がこの桁数を上回ると指定は無視される（エラーにはなら
 ない）
 ・つまり「表示において確保してほしいスペースの大きさ」を示す
 ・桁数を下回る場合、前にその数のスペースが挿入される
 ・例： Console.WriteLine("{0, 5}", 123); //「 123」と前に空白が２個入る
 ・例： Console.WriteLine("{0, 5}", 123456); //「123456」となり、桁数指定は無視さ
 れる
 ・桁数に負の数を指定すると、桁数を下回る場合、後ろにその絶対値の数のスペースが挿
 入される
 ・例： Console.WriteLine("{0, -5}", 123); //「123 」と後ろに空白が２個入る

 p.30 text05.cs

 //p.30 text05.cs
 using System;
 class Text05 {
 public static void Main() {
 int x = 10, y = 123456789;
 Console.WriteLine("1233456789012345678901234567890"); //30桁のゲージを表
 示
 Console.WriteLine("{0, 10}", "abc"); //桁数超過なので桁数は無視
 Console.WriteLine("{0, 5}", "def"); //前に空白が2個入る
 Console.WriteLine("{0, 0}", "ghi"); //桁数ゼロなので無視
 Console.WriteLine("{0, 10}{1, 10}", "あ", "い"); //共に前に空白が9個入
 る
 Console.WriteLine("{0, -10}{1, -10}", "あ", "い"); //共に後に空白が9個
 入る
 Console.WriteLine("x = {0, 5}, y = {1, 3}", x, y); //10の前に空白が3個
 入る
 }
 }

 p.30 標準書式指定文字を使った書式の指定

 ・桁数の指定において、桁数の次に「:標準書式指定文字」を付けることで、予め用意さ
 れている書式への変換や編集をしてくれる
 ・ただ、あまり利用されいないものや仕様が複雑なものもあるので、ここでは抜粋して説
 明のみとする
 ① 16進数に変換　：{引数の番号, 桁数:X} 例：123 ⇒ 7B
 ② 指数形式に変換：{引数の番号, 桁数:E} 例：123.456 ⇒ 1.23456E+002（1.23456×
 10の2乗の意味）

 - 4 -

 [memo20231021.txt]

 ③ 通貨形式に変換：{引数の番号, 桁数:C} 例：123456 ⇒ \123,456
 ④ 百分率に変換　：{引数の番号, 桁数:P} 例：0.05 ⇒ 5.00%

 p.32 カスタム書式指定文字を使った書式の指定

 ・桁数を「0」または「#」によるプレースホルダで指定する手法で、小数点の位置と３桁
 カンマ区切りも指定できる
 ・ここでは抜粋して説明のみとする
 ① ゼロサプレス 例："{0, 7:0000.00}",1.2 ⇒ 0001.20 (前と後ろに0が入る)
 ② 空白　　　　 例："{0, 7:####.##}",1.2 ⇒ 1.2 (前と後ろに空白が入る)
 ③ カンマ区切り 例："{0, 7:#,#}, 1234546 ⇒ 123,456（３桁区切りでカンマが入る）

 p.35 ユーザの入力を知る

 ・ここまでのプログラムは実行すると常に同じ結果を表示したが、実行してからコンソー
 ルから文字列を渡すことができる
 ・この処理には文字列型の変数が必要
 ・宣言書式： string 変数名;
 ・そして「変数名 = Console.ReadLine();」とすると、コンソールから文字列を渡すこと
 ができる
 ・しかし、これだけでは分かりづらいので、その直前にConsole.Writeで「何を入力して
 欲しいか」を表示すると良い
 例：
 string n:
 Console.Write("好きなキャラは：");
 n = Console.ReadLine();
 ・文字列型の変数はそのまま表示しても良いし、連結に用いることもできる

 提出：p.35 readline01.cs

 次回予告：p.36「練習問題」を済ませて、第３章に進みます

 - 5 -

